Surely, a debatable title. But I was in high school, give me a break.
read moref(x) and g(x) are odd, so: given: -f(x) = f(-x) and -g(x)=g(-x) (f+g)(x)=f(x)+g(x) (f+g)(-x)=f(-x)+g(-x) (f+g)(-x)=-f(x)+-g(x) Therefore: the sum is odd ------------------------------------------------------- f(x) and g(x) are even, so: f(-x) = f(x) and g(-x) =g(x) (f*g)(x)=f(x)*g(x) (f*g)(x)=f(-x)*g(-x) (f*g)(x)=(f*g)(-x) Therefore they are even. f(x) and g(x) are odd, so: f(-x)=-f(x) and g(-x)=-g(x) (f*g)(x)=f(x)*g(x) (f*g)(-x)=f(-x)*g(-x) (f*g)(-x)=-f(x)*-g(x) Product of two negative functions is positive.