
Truth Table

¬(p⋁q) p⋀q ¬(p⋁q)⋁(p⋀q)

F T T

F F F

F F F

T F T

p q p⋁q ¬(p⋀q) (p⋁q)⋀¬(p⋀q)

T T T F F

T F T T T

F T T T T

F F F T F

We want to find the inverse of this 
(p⋁q)⋀¬(p⋀q) which would be 
finding the inverse of the “exclusive 
or”.

I believe ¬(p⋁q)⋁(p⋀q) works but I’m 
wondering if it’s the simplest possible 
case. 

What happens when we bring 
recursion into this? i.e. we plug entire 
statements in as p or q recursively. 
What happens to the truth tables?

Is there a way to go from 
conjunctions (⋀) to disjunctions (⋁) 
using nots (¬)? 

(p⋁q)⋀¬(p⋀q) ¬(p⋁q)⋁(p⋀q)



Original ¬ Distributed ⋁ -> ⋀ Both

¬(p⋁q)⋁(p⋀q) (p⋁q)⋁ ¬(p⋀q) ¬(p⋁q)⋀(p⋀q) (p⋁q)⋀ ¬(p⋀q)

T T F F

F T F T

F T F T

T T F F

¬(p⋀q) p⋁q ¬(p⋁q) p⋀q

F T F T

T T F F

T T F F

T F T F

Is it true that if you distribute and 
alternate between conjunction and 
disjunction all truth table values will 
alternate?

For imply statements, when we have 
p→q, and p is false and q is true, it 
seems like p could imply q but it does 
not necessarily. So why do we say 
that the implication is true in that 
case? 

If you distribute, as done above, do 
you get all true for all statements? Or 
is dependent on the original truth 
table? If you go from conjunction to 
disjunction do they all go to false or 
once again does this depend on the 
statement? 



Why is this true? 

p→q is logically equivalent to ¬p⋁q


