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Lecture 1
September 4

Groups:

Definition: A symmetry is a map from an object to itself preserving all relevant struc-
ture.

Consider a smiley face in a plane. It has two symmetries: the identity map id and the
“flip” map f that rotates it 180 degrees around the vertical axis. We can consider the four
possible compositions of the maps:

id � id = id f � id = f id � f = f f � f = id.

What is a group? First we consider the following:

Definition: A semigroup is a set G and an operation · (or multG) : G ⇥ G ! G such
that this operation is associative, i.e. (a · b) · c = a · (b · c) 8 a, b 2 G.
Remark: Composition of functions is always associative.

Definition: A monoid is a s semigroup (G, ·) such that there exists an element (1) which is
a unit.

Definition: A unit in a semigroup is an element such that 8 x 2 G, 1 · x = x · 1 = x.

Lemma: A monoid has at most one unit.
Proof: Assume for the sake of contradiction that 1 and 10 are both units. Then 1 = 1 · 10
because 10 is a unit and 10 = 10 · 1 because 1 is a unit. Thus 1 = 10.

Definition: A group is a monoid such that every element has an inverse.

Definition: An inverse of an element a 2 G is an element b 2 G such that a · b = b · a = 1.

Lemma: An element a in a monoid G has at most one inverse.
Proof: Assume for the sake of contradiction b, c 2 G are both inverses of a 2 G. Then:

b · a · c = (b · a) · c = 1 · c = c

b · a · c = b · (a · c) = b · 1 = b.

Thus b = c. We usually represent the inverse of a as a�1 when the operation is multiplication
(or analogous to it) and as �a when the operation is addition.
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Summary:
A group is a set G with an operation · : G⇥G ! G such that:
1. The operation is associative.
2. There exists a unit.
3. Every element has an inverse.

Comments on Associativity:
Given x

1

, . . . xn 2 G (group), define x
1

· xn inductively as (x
1

· xn�1

) · xn, i.e. as (· · · ((x
1

·
x
2

) · x
3

) . . . xn�1

) · xn

Lemma:
kY

i=1

xi ·
nY

j=k+1

xj =
nY

i=1

xi

Proof: By induction.

Examples of Groups:

The Mattress Group is the set of actions one one can perform on a mattress, also known as
the Klein Four Group. It consists of the identity 1, a horizontal flip H, a vertical flip V and
a spin S. The multiplication table follows. Note that the operation of the column is applied
first.

1 H V S
1 1 H V S
H H 1 S V
V V S 1 H
S S V H 1

(Z,+) is an abelian (commutative) group (i.e. 8 a, b 2 G, a · b = b · a). Its unit is 0.

(Z, ·) is not a group, but it is a monoid with 1 as its unit. The same is true for (R, ·).

(R� {0}, ·) is an abelian group with 1 as its unit.

(Matn(R), ·), i.e. the set of n ⇥ n matrices with real elements, is not a group, but it is
a monoid with I (as a matrix) as its unit.

GLn(R) = {A 2 Matn(R) | A is invertible} is a group known as the general linear group
with I (as a linear map) as its unit.

Check: If A,B 2 GLn(R), (AB) 2 GLn(R).
Proof: A and B are both invertible, and (AB)�1 = B�1A�1 2 GLn(R)

Definition: A subgroup H < G is a subset H ⇢ G such that:
1. If a, b 2 H, then ab 2 H. (Closure under the operation).
2. 1 2 H
3. If a 2 H, then a�1 2 H. (Closure under inversion).

2

Joe Puccio
because no inverse for all zeros, and other matrices.
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September 6

Examples of Subgroups:

(Z,+) < (R,+) (2Z,+) < (Z,+) ({1,�1}, ·) < ({1,�1, i,�i}, ·) < (C⇤, ·) Note: C⇤ = C�{0}.

Aside (Application to Number Theory): What are the subgroups of (Z,+)?

Lemma: Let H < Z. Then either H = {0} or H = aZ, a 2 Z�0

. In fact, a will be
the smallest positive integer in H.
Proof : Either H = {0} or 9 b 2 H, b 6= 0. Then either b > 0 or �b > 0, so 9 some positive
integer in H. Then we shall use the well-ordering principle, a property of Z+ that states
that every non-empty set of positive integers contains a least element. So 9 a 2 H that is the
smallest positive integer in H. We know that 0 2 H and �a 2 H because it is a subgroup.
We know that ka = a+ · · ·+ a| {z }

k times

2 H by repeated application of the property of the subgroup

of closure under addition. We treat k(�a) similarly.

So aZ = {a` | ` 2 Z} ⇢ H. Now suppose 9 n 2 H with n 6= ka for some k 2 Z. Then
n = qa+ r with q 2 Z, r 2 {1, . . . , a� 1}. So qa 2 H and �qa 2 H. Thus �qa+n = r 2 H.
But r 2 {1, . . . a � 1}, so r is a number in H that is smaller than a the smallest number in
H. This is a contradiction. Thus @ n 2 H with n 6= ka for some k 2 Z, i.e. H ⇢ aZ. Thus
H = aZ.

Idea: Given two integers a, b, we can form ha, bi = {ka + `b | k, ` 2 Z} < Z. We call
this the “subgroup generated by a and b.”
Proposition: Let ha, bi = dZ, d > 0. Then:
1. d = ra+ sb with r, s > 0.
2. d = gcd(a, b)
Proof:
1. dZ = {ka+ `b | k, ` 2 Z}, so d = ra+ sb.
2. a 2 dZ, so a = kd and d | a. Similarly for b. If e | a and e | b, then e | ra + sb, so e | d.
Thus e  d, so d is the greatest common divisor of a and b.

Definition: p is prime if its only divisors are 1 and p.

Lemma: If p is prime and p | ab, then p | a or p | b.
Proof: Either p | a or p | b. If p - a, gcd(p, a) = 1. So 1 = ra + sp. Thus b = rab + spb.
p | rab and p | spb, so p | rab+ spb, which implies that p | b.

Corollary (Unique Factorization Theorem):
Given n 2 Z>0

, there exists a unique function f : {p 2 Z | p is prime} ! Z�0

such that

n =
Y

p prime

pf(p).

(We omit the terms with f(p) = 0).
Proof (from PSet 1):
Assume for the sake of contradiction that the set of integers with no prime factorizations is
nonempty. The well-ordering principle tells us that this set has a smallest element a. This
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means that if n < a, n has a prime factorization. We know a 6= 1, because 1 has a trivial
prime factorization. Also, a cannot be prime, because all primes have a prime factorization
as well. Thus a must have at least one divisor not equal to 1 or itself, which we will call b.
a/b is an integer, and it is less than a, so it must have a prime factorization. b < a, so b has
a prime factorization as well. Let

a/b = pe1
1

· · · penn and b = qf1
1

· · · qfnn
be the prime factorization of a/b and b, respectively. Here the pi and qi are all prime and
the exponents ei and fi are at least 1. If we multiply the prime factorization of a/b by b, we
find

a = pe1
1

· · · penn qf1
1

· · · qfnn ,

which is another prime factorization. Obviously for any pi = qj , we would combine the terms
and add the exponents. This contradicts our assumption that a was the smallest integer that
does not have a prime factorization. Thus there can be no smallest element of the set de-
scribed above, which means the set is empty.

Now we shall prove that every integer n has a unique prime factorization. Assume for the
sake of contradiction that the set of integers with multiple prime factorizations is nonempty.
Again, the well-ordering principle tells us that this set has a smallest element a. Thus if
n < a, n has a unique prime factorization. Let the two prime factorizations of a be pe1

1

· · · penn
and qf1

1

· · · qfnn , where the pi and qi are all prime and the exponents ei and fi are at least 1.
There are now two separate cases to consider: either the prime factorizations share at least
one prime or they have no primes in common. In the first case, assume that there exists some
i and j, with 1  i  m and 1  j  n such that pi = qj . We can divide each factorization
by pi or qj , which yields

a/pi = pe1
1

· · · pei�1

i · · · penn = qf1
1

· · · qfj�1

j · · · qfnn .

If the prime factorizations are the same after dividing by the same number, the original prime
factorizations must have been the same. But a/pi < a, so this contradicts our assumption
that a was the smallest prime with multiple factorizations. In the second case, the two prime
factorizations do not have any prime in common. Take p

1

, the first prime in the first factor-
ization. p

1

divides a, so p divides the second factorization. By Euclid’s Lemma (proved in
class), p

1

must divide some qj . But p
1

cannot divide any number except itself, so p
1

= qj .
This contradicts our assumption that the two factorization do not have any prime in common.

Examples of Groups:

Permutations: Perm(S) = ({f : S ! S | f is a bijection}, �)
If S = {1, 2, . . . , n}, we call Perm(S) Sn, the symmetric group on n figures. We shall examine
a few of these groups.

S
2

= {id, T}. T is a transposition, i.e. T (1) = 2 and T (2) = 1.

To represent an element of S
6

, consider how it acts on the elements of S. For example,
consider

1 7! 3 2 7! 6 3 7! 5 4 7! 4 5 7! 1 6 7! 2.

We examine the cycles:

1 7! 3 7! 5 7! 1 2 7! 6 7! 2 4 7! 4.

4

Joe Puccio
What exactly is this? 

Okay, wow, so this is the set of possible ways a bijection could exist between S and S. So the id will always be in this set for all n. 

Joe Puccio
Like what are these objects in the group?

Joe Puccio




Using cycle notation, we can represent this element as (1 3 5)(2 6)(4). Note that each number
occurs once, although we usually omit the cycles of 1 element. A caveat: this map is the
same as (5 1 3)(6 2)(4).

Thus the elements of S
3

are 1 (the identity), (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

The product of any of these cycles is equivalent to composition of functions. Note that
the second cycle is applied first. Consider (1 2 3)(1 2). Since the cycles have overlapping
elements, we can represent this as one cycle. To do so, we follow the elements:

1 7! 2 7! 3 2 7! 1 7! 2 3 7! 3 7! 1.

By examining the cycles again, we see that (1 2 3)(1 2) = (1 3).

Group Homomorphisms:

Definition: � : G ! H is a group homomorphism if and only if 8 a, b 2 G,�(a · b) =
�(a) · �(b).
Note that the · on the left represents the group operation of G, and the · on the right repre-
sents the group operation of H. Another way to see this is that a group homomorphism is
a map between groups that preserves the structure. A fancy way to write this is

G⇥G H ⇥H

G H

�⇥ �

multG multH

�

.

� is a group homomorphism if this diagram commutes.
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Properties of Group Homomorphisms:

Lemma: If � is a homomorphism from G to H, then:
1. �(1G) = 1H .
2. �(a�1) = �(a)�1.
Proof:
1. �(1G) · �(1G) = �(1G). H is a group, so there exists an inverse of �(1G). Call it �(1G)�1.
Then �(1G)�1 · �(1G) · �(1G) = �(1G)�1 · �(1G) = �(1G). Thus �(1G) = 1H .
2. �(a) · �(a)�1 = �(a · a�1) = �(1G) = 1H . Similarly, �(a)�1 · �(a) = 1H . Thus
�(a�1) = �(a)�1.

Inclusion of a subgroup, e.g. i : Z ,! R (as additive groups), is a group homomorphism.

Consider C
6

= {1, x, x2, x3, x4, x5}, with the group law defined as xi · xj = xi+j mod 6.
Note that x3 ·x5 = x2 and x�1 = x5. We call Cn with n 2 Z>0

the cyclic group on n elements.

Consider � : C
3

! C
6

, i.e. {1, y, y2} ! {1, x, x2, x3, x4, x5}. We must have 1 = �(1) =
y3 = �(y)3 for � to be a group homomorphism. One option is

1 7! 1 y 7! x2 y2 7! x4.

Another is
1 7! 1 y 7! x4 y2 7! x2.

Of course, another option is for �(a) = 1 8 a 2 C
3

.

Now consider  : C
6

! C
3

. There are similar restrictions that yield three options. They are

1 7! 1 x 7! y x2 7! y2 x3 7! 1 x4 7! y x5 7! y2

or
1 7! 1 x 7! y2 x2 7! y x3 7! 1 x4 7! y2 x5 7! y

or the constant map. Note that, ignoring the constant map,  is surjective. Note also that
� �  is neither injective nor surjective, though it is of course a group homomorphism.

Another example of a group homomorphism is the determinant det : GLn(R) ! R⇤. (We
know det(AB) = det(A)det(B)).

Group Representations:

Recall the symmetric group Sn, the set of bijections � : {1, . . . , n} ! {1, . . . , n}. Given
a group homomorphism ⇢ : Sn ! GLn(R), we define ⇢(�) to be the linear map such that
⇢(�)(ek) = e�(k), where ek is the n⇥ 1 column vector consisting of a one in the kth spot and
zeroes elsewhere. As a matrix, the ij entry of ⇢(�) is one if �(j) = i and zero otherwise.

As examples in S
3

, consider

M(⇢((1 2 3))) =

2

4
0 0 1
1 0 0
0 1 0

3

5 M)(⇢((1 2))) =

2

4
0 1 0
1 0 0
0 0 1

3

5

6
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(M is just the map from a linear map to its associated matrix).

Lemma: ⇢ is a group homomorphism.
Proof: We need to show that ⇢(�) � ⇢(⌧) = ⇢(� � ⌧). It su�ces to check this on the ek, as
they form a basis:

⇢(�) � ⇢(⌧)(ek) = ⇢(�)(e⌧(k)) = e�(⌧(k)) = e
(��⌧)(k) = ⇢(� � ⌧)ek.

Definition: A representation of a group is a homomorphism to a linear group (e.g. GLn(R)).

Example:
det�⇢ : Sn ! R⇤ is the representation of Sn. It is usually written as sign : Sn ! {�1, 1}.
For example sign((1 2 3)) = 1 and sign((1 2)) = �1.

Image and Kernel:

If � : G ! H is a group homomorphism, there are two important subgroups to consider.
They are the image and kernel of � and are defined as

im(�) = {y 2 H | 9 x 2 G such that �(x) = y} < H

ker(�) = {x 2 G | �(x) = 1} < G.

Any subgroup of H is the image of some map � from some group G. If M < H, let the
inclusion mapping i : M ,! H be our map. This is not true for the kernel. For example,
consider S

3

with subgroup G = {1, (1 2)}. Are there a group H and a map � : S
3

! H such
that ker� = G?

Lemma: No.
Proof: We saw that (1 2 3)(1 2) = (1 3) but (1 2)(1 2 3) = (2 3) = (1 3 2)(1 2). Let
(1 2) = a and (1 2 3) = b. Then ab = b2a. By assumption �(a) = 1H because a 2 ker(�),
so �(b) = �(b)�(b). This is only true if �(b) = 1H . Also, �((1 3)) = �(ba) = 1H and
�(2 3) = �(ab) = 1H . So � must be the constant map to 1H . Thus is (1 2) 2 ker(�), then
ker(�) = S

3

.

Given a group homomorphism � : G ! H, we consider the sequence

ker(�) ,! G ⇣ im(�).

This “breaks up” G into smaller parts which interact in some way. More on this later.

Definition: N < G is a normal subgroup if g · x · g�1 2 N 8 x 2 N and 8 g 2 G. Then
g · x · g�1 is known as the conjugate of x by g.

Lemma: Given a homomorphism � : G ! H, ker(�) is a normal subgroup of G.
Proof: Suppose x 2 ker(�) and g 2 G. Then �(gxg�1) = �(g)�(x)�(g�1) = �(g)�(g)�1 = 1.

Definition: Conjugation by g is the map Cg : G ! G that sends x to gxg�1.
Note that this is a group homomorphism.

Aside: What does Cg(x) = x mean? gxg�1 = x, so gx = xg and gxg�1x�1 = 1. (The
term gxg�1x�1 is known as the commutator of g and x).
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Isomorphisms and Automorphisms:

Definition: An isomorphism is a bijective group homomorphism.

Theorem: Given a group homomorphism � : G ! H, the following are equivalent and
show � is an isomorphism:
1. � is a bijection
2. 9  : H ! G that is a group homomorphism and such that  � � = idG and � �  = idH .
Proof:
2 =) 1: An inverse group homomorphism is also an inverse of a mpa of sets, so this shows
that � is a bijection of sets.
1 =) 2: If � is a bijection, then it has an inverse map of sets ��1 : H ! G. We can show
that ��1 is a group homomorphism.
Given a, b 2 H, there exists x, y 2 G such that �(x) = a and �(y) = b. Then �(xy) = ab, so
��1(ab) = xy and ��1(a)��1(b) = xy.

If � : G ! H is an isomorphism, we write G
⇠
=! H. Also, if some isomorphism � : G ! H

exists, we write G ⇠= H and say G is isomorphic to H.

Definition: An automorphism is an isomorphism from a group to itself.

Aut(G), the set of all automorphisms on G, is a group and is often called the “group of
symmetries of G.”

Examples:

Consider C
3

= {1, x, x2} with x3 = 1. Then Aut(C
3

) = {id, swap} ⇠= C
2

. (The swap
map is defined with 1 7! 1, x 7! x2, and x2 7! x).

Recall conjugation by g 2 G, the map Cg : G ! G that take x to gxg�1. This is an
automorphism, which can be easily proved by proving it is a homomorphism and proving it
has an inverse.

Now consider C : G ! Aut(G) that sends g to Cg.
Proposition: This is a group homomorphism.
Proof: Cgh(x) = (gh)x(gh)�1 = ghxh�1g�1 = g(hxh�1)g�1 = Cg(hxh�1) = (Cg � Cg)(x).

Warning/Note: If we were to use
⇠
Cg(x) = g�1xg = Cg�1(x), then

⇠
C : G ! Aut(G)

is not generally a homomorphism.

Also, ker(C) = {g | Cg : G ! G is id} = {g | gxg�1 = x 8 g 2 G} = {g | gx = xg 8 x 2
G} = {g | g commutes will all elements of G} = Center(G).

Examples of the Center:
1. Center(C

3

) = C
3

. (This is true for all abelian groups).
2. Center(S

3

) = {1}.
3. Center (GL

2

(R)) = {�I | � 2 R⇤} < GL
2

(R).

8

Joe Puccio
So is an isomorphism a map that goes from G->H such that every element in G has an image in H and no two elements in G share their image in H, and moreover if you apply this map to two elements in G, the resulting image is the same regardless of whether you apply the map before or after you apply the group operation to the two elements?

Joe Puccio

Joe Puccio

Joe Puccio


Joe Puccio

Joe Puccio


Joe Puccio


Joe Puccio
An element is in the center if it commutes with every element in the group (eg. the identity is always in the center)



Cosets:

Definition: Given H < G, a left coset of H is a set of the form gH = {gh | h 2 H}
with g 2 G. A right coset is defined similarly.

Proposition: the left cosets of H < G partition G, i.e.
1. Given two left cosets g

1

H and g
2

H, either g
1

H = g
2

H or g
1

H \ g
2

H = ;.
2. The union of all left cosets is all of G
Proof:
1. Given g

1

H and g
2

H, either g
1

H \ g
2

H = ; or 9 x 2 g
1

H \ g
2

H. Assume the latter is
true. Let x = g

1

h = g
2

k for some h, k 2 H.
We first show g

1

H ⇢ g
2

H. Given g
1

` 2 g
1

H with ` 2 H, we can use g
1

h = g
2

k, which implies
g
1

= g
2

kh�1, to write g
1

` = g
2

kh�1`. kh�1` 2 H, asH is a subgroup. Thus g
1

` 2 g
2

H, which
implies g

1

H ⇢ g
2

H. Using a similar argument for g
2

a 2 g
2

H, we can show g
2

H ⇢ g
1

H, so
g
1

H = g
2

H if their intersection is non-empty.
2. g = g · 1 2 gH, so any g 2 G is in some gH.

When is the set of left cosets a group?
Proposition: Given H < G, the following are equivalent:
1. H is a normal subgroup of G.
2. gH = Hg 8 g 2 G.
3. Every left coset is a right coset.
Proof:
1 =) 2: Assume H /G. We need to show that gH ⇢ Hg. Given gh, we need to write it as
ag for some a 2 H. We can do this thus using an inverse: gh = ghg�1g = (ghg�1)g 2 Hg.
2 =) 1: If gH = Hg, then gh = kg for some k 2 H, so ghg�1 = k 2 H.
2 =) 3: Left cosets are sets of the form gH = Hg.
3 =) 2: The left and right cosets containing g are gH and Hg, respectively. So Hg = gH.
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Quotients:

Given H / G, we want to form G/H, i.e. “setting H equal to 1,” such that G/H is a
group. As a set, G/H is the set of all cosets of H. How should multiplication on G/H be
defined, i.e. what should aH · bH be?

Proposition: The set aH · bH = {xy | x 2 aH, y 2 bH} is a coset of H. In fact, it is
abH. Then aH · bH = abH.
Proof: We first show that abH ⇢ aH · bH. Given h 2 H, abh 2 abH. abh = (a · 1)(b · h) 2
aHbH.
Now we show aH · bH ⇢ abH. Given h, k 2 H, we must show that ah · bk 2 abH. We shall
use an inverse: ahbk = abb�1hbk = ab(b�1hb)k. We recall that b�1hb is conjugation of h by
b�1. Since H is normal, b�1hb 2 H. Thus ahbk = abx for some x 2 H, so ahbk 2 abH.
Alternate Proof: bH = Hb, as H is normal. aH · bH = aH · Hb = a(H · H)b = aHb =
a(Hb) = abH.

We now have a set G/H and a well-defined operation on this set.
Proposition: this is a group.
Proof: Associativity follows from associativity of G. (aH · bH)(cH) = (ab)cH = a(bc)H =
(aH)(bH · cH). The identity is H = 1H = hH for any h 2 H. The inverse of an a element
aH is a�1H.

Examples of Quotients:

nZ / Z: Z is abelian, so any subgroup is normal. Z/nZ is the group of cosets of nZ.
The cosets are 0 + nZ, 1 + nZ, . . . , (n � 1) + Z. We call this group the integers modulo n
with addition modulo n.

G = {f : R ! R | f(x) = ax + b, a 2 R⇤, b 2 R} with composition. Two interesting
subgroups of this are the translations T = {f : R ! R | f(x) = x + b, b 2 R} and the
dilations D = {f : R ! R | f(x) = ax, a 2 R⇤}. Note that T and D are abelian. We shall

also define the maps ⌧ : R
⇠
=! T that takes b to the map f(x) = x + b and m : R

⇠
=! D that

takes a to the map f(x) = ax.
Also, we see that G is not abelian: with f

1

(x) = x+ 1, and f
2

(x) = 2x, f
1

� f
2

(x) = 2x+ 1
but f

2

� f
1

(x) = 2x+ 2.
Now we consider if either of these subgroups is normal. If T is normal, then m

1/a � tb �
ma 2 T , and if D is normal, then ⌧�b � ma � ⌧b 2 D. Examining the first case, we see
m

1/a � tb �ma(x) = (1/a)((ax) + b) = x + b/a 2 T , so T is normal. In the second case, we
see ⌧�b �ma � ⌧b(x) = a(x+ b)� b = ax+ b(a� 1) /2 D, so D is not normal.

Claim: G/T ⇠= R⇤.
Proof: The cosets are maT = {f : R 7! R | f(x) = ax+ b, b 2 R} with a 2 G (as exercise).
Also, (ma1T )(ma2T ) = ma1ma2T = ma1a2T. So G/T ⇠= R⇤ via � : R⇤ ! G/T that maps a
to maT .

We now consider: R
⌧
,! G

S⇣ R⇤, with ⌧(b) = ⌧b and S({x 7! ax + b}) = a. ⌧ is injec-
tive, S is surjective, im(⌧) = ker(S), and S gives the isomorphism between G/T and R⇤.

10



Definition: A short exact sequence is defined as H
↵
,! G

�
⇣ G0 with im(↵) = ker(�).

11



Lecture 6
September 16

Quotients and Extensions:

First Isomorphism Theorem:
Suppose � : G ! G0 is a surjective group homomorphism. Then G0 ⇠= G/ ker(�)
Proof: Delayed.

Note that if we have a short exact sequence: H
i
,! G

⇡⇣ K with im(i) = ker(⇡), then
K ⇠= G/im(i) by this theorem.

Theorem (Universal Property of the Quotient):
Given H /G, suppose there is a homomorphism � : G ! G0 such that H < ker�. Then there
exists a unique homomorphism � : G/H ! G0 such that � � ⇡ = �, i.e. that the following
diagram commutes:

G G0

G/H

�

⇡
�

.

Proof: What must �(gH) be? If must be �(g), as � � ⇡(g) = �(g). Since this must hold for
arbitrary g 2 G, we have proved the uniqueness of �.
Now we must prove the existence of �. First we check that �(gH) is well-defined. We know
hH = H if h 2 H, so we pick two elements h

1

, h
2

2 H and ensure that � maps h
1

H
and h

2

H to the same element in G0. This is equivalent to checking that �(gh
1

) = �(gh
2

).
�(gh

1

) = �(g)�(h
1

) = �(g) because h
1

2 H < ker(�). Similarly �(gh
2

) = �(g)�(h
2

) = �(g),
so �(gx) with x 2 H is well-defined.
Next we check that this is a group homomorphism: �(g

1

g
2

H) = �(g
1

g
2

) = �(g
1

)�(g
2

) =
�(g

1

H)�(g
2

H)

Aside:
Definition: An abstract quotient Q,⇡ for G and H with H / G is a group Q and a map
⇡ : G ! Q such that H < ker(⇡) such that the Universal Property of the Quotient is satisfied
(with Q,⇡ is place.)

Theorem: Any abstract quotient is isomorphic to G/H
Proof: Exercise.

Proof of First Isomorphism Theorem: Given H / G and � : G ! G0 such that
H = ker(�). By the Universal Property of the Quotient, there exists a unique homomor-
phism � : G/ ker(�) ! G0 such that � � ⇡(g) = �(g · ker(�)) = �(g) 8 g 2 G.
We claim that this map is bijective, which implies it is an isomorphism. We first show that
� is surjective. We know that � is surjective, so given x 2 G0, 9 g such that �(g) = x. Then
�(gH) = x for any x 2 G0, so � is surjective. Next we show that � is injective. We know
that �(gH) = �(g) = 1 , g 2 ker(�) , g ker(�) = ker(�). So the only element of G/ ker(�)
which is mapped by � to 1 is the coset ker(�). Thus � is injective.

Definition: A group extension of the groups H and K is a group G and two maps i,⇡

12



such that H
i
,! G

⇡⇣ K is a short exact sequence (with im(i) = ker(⇡)), i.e. with G/H ⇠= K.

Examples of Extensions:

Definition: The direct product of the groups H and K is the set H ⇥ K = {(h, k) |
h 2 H, k 2 K} with multiplication defined as (h

1

, k
1

)(h
2

, k
2

) = (h
1

h
2

, k
1

k
2

). This a group
with unit (1H1K). Note also that H ⇥ {1K} and {1H} ⇥ K commute, as (h, 1) · (1, k) =
(h, k) = (1, k) · (h, 1).

Proposition: Suppose H,K < G with HK = G and hk = kh 8 h 2 H, k 2 K. Then
G ⇠= H ⇥K.
Proof: We can show that � : H ⇥ K ! G is an isomorphism. First we show that it is a
homomorphism:

�((h
1

, k
1

)(h
2

, k
2

)) = �(h
1

h
2

, k
1

k
2

) (definition of multiplication in H ⇥K)

= h
1

h
2

k
1

k
2

(definition of �)

= h
1

k
2

h
2

k
2

(elements of H and K commute with each other)

= �(h
1

, k
1

)�(h
2

, k
2

). (definition of �)

Next we show that � is surjective. We know that HK = G, which means that any element
g 2 G can be expressed as g = hk. This means that 8 g 2 G, 9 (h, k) 2 H ⇥ K such that
�(h, k) = hk. Thus � is surjective. To show that � is injective, consider ker(�). The only
element of H ⇥ K that will map to the identity in G is (1H , 1K), which is the identity in
H ⇥K. Thus � has a trivial kernel and is injective. Thus � is a bijective homomorphism,
so it is an isomorphism, and G ⇠= H ⇥K.

Example: C
2

⇥ C
3

⇠= C
6

, or more generally, Cm ⇥ Cn
⇠= Cmn if m and n are relatively

prime.
Proof: {1, x}⇥ {1, y, y2} ⇠= {1, z, z2, z3, z4, z5} via � defined with x 7! z3, y 7! z2, y2 7! z4,
xy 7! z5 = z�1, and xy2 7! z.
In general, we can form � : Z/mnZ! Z/mZ⇥Z/nZ. (Note that Ck

⇠= (Z/kZ,+) with 0 as
the unit). � maps 1 to (1, 1). 4(Neither of these is the unit). Because m and n are relatively
prime, the lowest k such that (k mod m, k mod n) = (0, 0) is k = mn. So the map � has a
trivial kernel, which means it is injective. Also, |Z/mnZ| = mn and |Z/mZ⇥Z/nZ| = mn,
so � is surjective.
Remark: C

4

� C
2

⇥ C
2

Order and Index:

Definition: Given a group G, the order of G (|G|) is the number of elements in the group.

Definition: Given an element x of a group G, the order of x (|x|) is the smallest k 2 Z
such that xk = 1. If no k exists, then x has infinite order.

Definition: Given a group G and a subgroup H, the index of H in G ([G : H]) is the
number of left cosets of H in G.

Lagrange’s Theorem: If G is a finite group and H < G, then |H| | |G|.
Proof: The left cosets of H partition G, and all are of size |H|, so |G| = |H| · [G : H]

13



Corollary: The order of an element divides the order of the group if the group is finite.
Proof: Let x 2 {1, x, x2, . . . , xk�1} < G. |x| = k = |H|, so |x| | |G|.

Application (Fermat’s Little Theorem):

ap ⌘ a mod p for a 2 Z, p prime.
Proof: The group (Z/pZ)⇤ with multiplication modulo p has order p � 1. So if a 6⌘
0 mod p, ap�1 ⌘ 1 mod p because ak = 1 mod p for some k such that k | (p � 1). So
(ak)m = ap�1 ⌘ 1 mod p. So if a ⌘ 0 mod p, the ap = a mod p and if a 6⌘ 0 mod p,
ap�1 ⌘ 1 mod p =) ap = a mod p.

14



Lecture 7
September 18

More on Order and Index:

Lemma: (Even if |G|, |H| are infinite), there are n left cosets in G if and only if there
are n right cosets of H in G.
Proof: We know x 2 gH , g�1x 2 H , (g�1x)�1 = x�1g 2 H , x�1 2 Hg�1. Suppose
g
1

H, . . . gnH is a list of all the di↵erent left cosets. These partition G. Thus Hg�1

1

, . . . Hg�1

n

partition the set of inverses, which is G.

Theorem: Z/mnZ ⇠= Z/mZ⇥Z/nZ if m and n are relatively prime.
Proof: We can form the isomorphism � : Z/mnZ ! Z/mZ ⇥ Z/nZ defined with a 7!
(a reduced mod m, a reduced mod n)

Rule: Given a cyclic group Z/kZ, a group homomorphism from Z/kZ to G is just a choice
of an element x 2 G such that xk = 1 (or k · x = 0 if the group is additive). If we examine
the previous map defined with 1 7! (1, 1), we see that this is a homomorphism.
Claim: This is an isomorphism.
Proof: Suppose (`, `) = (0, 0) 2 Z/mZ ⇥ Z/nZ. Then m | ` and n | `. Since m and n
are relatively prime, 9 a, b 2 Z such that am + bn = 1. Let ` = cm. Then n | cm, so
acm+ bcn = c =) a`+ bcn = c. So n | acm+ bn, i.e. n | c. So ` = cm = dmn and mn | `.
So the least multiple of (1, 1) that maps to (0, 0). is (mn,mn) = (0, 0). Thus the kernel is
trivial, so this is a bijection and thus an isomorphism.

Corollary: If n
1

, . . . nk are relatively prime, then Z/n
1

· · ·nkZ ⇠= Z/n
1

Z ⇥ · · · ⇥ Z/nkZ

via a 7! (a mod n
1

, . . . , a mod nk)

Chinese Remainder Theorem: Suppose we want x 2 Z such that x ⌘ a mod n
1

, x ⌘
ak mod nk. Then 9 x which is unique modulo n

1

· · ·nk.
Proof: Exercise.

More on Group Extensions:
We shall discuss three types:

1. Direct Products: (G = H ⇥ K with H
i
,! G

⇡⇣ K a short exact sequence). We’ve
discussed these already.
2. Split Extensions (Semidirect Products)
3. Non-Split Extensions (These are tricky).

Definition: Given H
i
,! G

⇡⇣ K (i.e. K ⇠= G/H), this is a split extension if there ex-
ists a group homomorphism (a “section”) � : K ! G such that ⇡ � � = idK , i.e. there exists
a copy of the quotient G/H ⇠= K in G which is given as im(�). If there is no such �, this
is a non-split extension. (We informally say that an extension is non-split if “we can’t see
G/H in G.” More on this later.)

Split Extensions:

Example: G = {f : R ! R | f(x) = ax + b, a 6= 0}. Consider the sequence R
⌧
,! G

⇡⇣ R⇤

with ⌧ defined with b 7! f(x) = x + b and ⇡ defined with f(x) = ax + b 7! a. The section
� : R⇤ ! G is defined with a 7! f(x) = ax. If we consider the translations T and the
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dilations D that we have previously discussed, we see that T = im(⌧) ⇠= R in G is normal
and D = im(�) ⇠= R⇤ in G is not normal.

Non-Split Extensions:

Example: Consider Z/2Z
i
,! Z/4Z with i defined with 1 7! 2. We choose the subgroup

{0, 2} < {0, 1, 2, 3} < Z/4Z. Then the quotient is (Z/4Z)/im(i) = {{0, 2}, {1, 3}}, These ele-
ments are the cosets im(i) and 1+im(i). Here {0, 2} is the identity and {1, 3}+{1, 3} = {0, 2},
so (Z/4Z)/im(i) ⇠= C

2

.

If we now consider the sequence Z
i
,! Z/4Z

⇡⇣ (Z/4Z)/im(i), does there exist a section �
such that ⇡ � � = id? We know that � must be a homomorphism, so �({0, 2}) = 0. Thus
�({1, 3}) can be 1 or 3. 1 + 1 ⌘ 2 mod 4 and 3 + 3 ⌘ 2 mod 4, so for whatever element we
choose, �({1, 3}) + �({1, 3}) = 2. But �({1, 3}) + �({1, 3}) = �({0, 2}) = 0 because � is a
group homomorphism. This is a contradiction, so no such � exists. Thus this extension is
non-split.

Quaternions:

Definition: The quaternions are a group defined as Q = {±1,±i,±j,±k} and with multi-

plication defined with i2 = j2 = k2 = ijk = �1, ij = k, ji = �k, jk = i, kj = �i, ki = j, and
ik = �j. Note that 1 is the identity and �1 commutes with everything.

To see why this is a group, we represent Q < GL
2

(R) with

1 =


1 0
0 1

�
� 1 =

�1 0
0 �1

�
i =


i 0
0 i

�
j =


0 �1
�1 0

�
k =


0 i
i 0

�
.
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Lecture 8
September 20

More on the Quaternions:

The set of elements in Q that commute is Center(Q) = {1,�1}/Q. The quotient of Q by this
subgroup is Q/{1,�1} = {{±1}, {±i}, {±j}, {±k}}, which we can represent as {1, x, y, z}
with x2 = y2 = z2 = 1 and xy = yx = z. Thus Q/{1,�1} is isomorphic to K

4

, the Klein
Four Group (which is also isomorphic to C

2

⇥ C
2

).

We now consider the sequence {1,�1} i
,! Q

⇡⇣ Q/{1,�1}. This is a short exact sequence,
as im(i) = {1,�1} = ker(⇡). We wish to know if this forms a split extension, that is, if there
is a homomorphism � : Q/{1,�1} ! Q such that ⇡ � � = idK .
We know that �(1) = 1, as � is a homomorphism. We have two choices for �(x), namely i or
�i, because ⇡({±i}) = x. For either of these choices, we know that �(x)2 = �1, but we also
know that �(x)2 = �(x2) = �(1) = 1 because � is a homomorphism. This is a contradiction,
so there is no such �.

Thus the extension, which can also be written as Z/2Z
i
,! Q

⇡⇣ Z/2Z⇥Z/2Z, is non-split
Aside: This is called a central extension, i.e. an extension A

i
,! G

⇡⇣ K with A ⇢ Center(G)
(i.e. A is abelian).

Lemma: If a central extension G of A,K is split, then G ⇠= A⇥K.
Proof: Exercise.

More on Split Extensions:

We consider the sequence H
i
,! G

⇡⇣ K with im(i) = ker(⇡), i.e. a short exact sequence. By
the First Isomorphism Theorem, G/H ⇠= K. If it is split, there exists � : K ! G such that
� � ⇡ = idK .

Claim: If im(i) and im(�) are two subgroups of G, then im(i) /G and
1. im(i) \ im(�) = {1}
2. im(i) · im(�) = G.
Proof:
1. � � ⇡ � i(x) = �(1) = 1 2 K because im(i) = ker(⇡) and � is a group homomorphism. So
if x 2 im(i) \ im(�), then k = 1.
2. Let g 2 G. Then ⇡(g) 2 K, � � ⇡(g) 2 im(�) < G, and ⇡ � � � ⇡(g) = ⇡(g). We
now consider (� � ⇡(g)) · g�1. We know ⇡ � � � ⇡(g) · ⇡(g�1) = ⇡(g) · ⇡(g�1) = ⇡(1) = 1.
Thus (� � ⇡(g)) · g�1 2 ker(⇡) = im(i). So � � ⇡(g)) · g�1 = h for some h 2 im(i). Then
h�1(� � ⇡(g)) = g. We know h�1 2 im(i) and � � ⇡(g) 2 im(�). So we have expressed an
arbitrary element in G as a product of elements in im(i) and im(�). Thus im(i) · im(�) = G.

Now we suppose (after some renaming), that H,K < G with H / G, H \ K = {1}, and
HK = G.
Corollary: G is in bijection with pairs (h, k) via (h, k) 7! hk.
Proof: Suppose h

1

k
1

= h
2

k
2

. Then h�1

2

h
1

= k
2

k�1

1

. Both of these must equal 1, as they are
in H \K. Thus the map defined above is an injective map between maps of the same size,
so it is bijective.

(Note that the above conditions are close to those for a direct product, except we need
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the elements of H and K to commute with each other, which is not necessarily the case
here).

What is the group law? Cleverly using some inverses, we can write hkh0k0 = h(kh0k�1)kk0.
Since H is normal, h(kh0k�1) 2 H and we know kk0 2 K. To record this, we define a map
� : K ! Aut(H) with k 7! �k(x) = kxk�1. We have previously shown that � is a group
homomorphism. Using this, we can write hkh0k0 = h�k(h0)kk0.

Definition: A semidirect product of H and K mediated by � : K ! Aut(H) is a group
which is H ⇥K (as a set) with group law (h, k) · (h0, k0) = (h�k(h0), kk0). We write this as
H o

�
K.

Theorem:
1. Given any H,K,� : K ! Aut(H), H o

�
K is a group and H / (H o

�
K)

2. Any split extension is a semidirect product.

3. Any sequence H
i1
,! H o

�
K

⇡⇣ K (with i
1

defined with h 7! (h, 0)) is a split short exact

sequence with section i
2

: K ! H o

�
K defined with k 7! (0, k).

Proof:
1. Exercise: Check that it is a group and the maps i

1

,⇡, i
2

are homomorphisms.
2. Done.

Examples:
Consider G = {f : R ! R | f(x) = ax + b, a 2 R⇤, b 2 R}. We shall denote f(x) = ax + b

as fa,b. We then consider the split short exact sequence R
⌧
,! G

⇡⇣ R⇤ with ⌧(b) = f
0,b and

⇡(fa,b) = a and with section � : R⇤ ! G defined as �(a) = fa,0. Then G ⇠= R⇤
n

�
R for some

� : R⇤ ! Aut(R). To determine �, we consider the conjugation fa,0 � f
0,b � f

1/a,0 = f
0,�a(b).

This yields a((1/a)x+ b) = x+ab. Thus �a(a) = ab, so � takes an element to multiplication
of that element and G ⇠= R⇤

n

mult

R
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Lecture 9
September 23

More on Semidirect Products:

We recall that we should think “�k1(h2) = k
1

h
2

k�1

1

.” Indeed: (1, k
1

)(h
2

, 1)(1, k�1) =
(�k1(h2), k1)(1, k

�1

1

) = (�k1(h2)�k1(1), k1k
�1

1

) = (�k1(h2), 1). Note that if � sends k to
idK 8 k 2 K, then H n

�
K ⇠= H ⇥K.

Check: H n

�
K is a group.

1. Identity: (1, 1)
2. Inverses: (h, k)�1 = (x, k�1) where �k(x) = h�1. It turns out x = (�k)�1(h�1) =
�k�1(h�1).
More intuitively, we can view (h, k) as “h · k00, so it would be natural to try (h, k)�1 =
(1, k�1)(h�1, 1). Indeed (h, 1)(k, 1)(1, k�1)(h�1, 1) = (1, 1). So (h, k)�1 = (1, k�1)(h�1, 1) =
(�k�1(h�1), k�1).
3, Associativity: ((h

1

, k
1

)(h
2

, k
2

))(h
3

, k
3

) = (h
1

�k1(h2), k1k2)(h3, k3) = (h
1

�k1(h2)�k1k2(h3), k1k2k3) =
(h

1

�k1(h2)�k1(�k2(h3)), k1k2k3) = (h
1

�k1(h2�k2(h3)), k1k2k3) = (h
1

, k
1

)(h
2

�k2(h3), k2k3) =
(h

1

, k
1

)((h
2

, k
2

)(h
3

, k
3

)).

Example:
The symmetries of the n-gon in the plane is also known as Dn, the dihedral group of order
2n. This group can be generated from a rotation counterclockwise by 2⇡/n, ⇢ and a reflection
about a line f .
If we consider the triangle: D

3

= {1, ⇢, ⇢2, f, ⇢f, ⇢2f}. The defining characteristic of the
group law is that f⇢ = ⇢2f = ⇢�1f. The two subgroups are the rotations {1, ⇢, ⇢2} and the
reflections {1, f}. The rotations form a normal subgroup, as f⇢f�1 = ⇢�1 (Exercise). Note
that D

3

= {1, ⇢, ⇢2} · {1, f}.
We can also write Dn

⇠= (Z/nZ)o
�
{�1, 1} with � : {�1, 1} ! Aut(Z/nZ) defined as 1 7! id

and �1 7! ��1

such that f⇢af�1 = ⇢��1(a). Since f⇢af�1 = f⇢f�1 · f⇢f�1 · · · f⇢f�1

(a times)

= ⇢�a,

�1 7! f(a) = �a.

We now consider the Bij(R2,R2), the set of all bijections from R2 to itself. We examine sub-
groups of translations and rotations (defined as T = {ta,b | a, b 2 R} ⇠= R⇥R with ta,b(x, y) =
(x + a, y + b) and R = {⇢✓ | ✓ 2 [0, 2⇡]} ⇠= R/2⇡Z with ⇢✓ = (x cos ✓ � y sin ✓, x sin ✓ +
y cos ✓). Note that this form for ⇢✓ comes from converting from the form in polar coordinates
(⇢✓(r, ) = (r, + ✓)) into Cartesian coordinates : ⇢✓(x, y) = (r cos( + ✓), r sin( + ✓)) =
(r cos cos ✓ � r sin sin ✓, r cos sin ✓ + r sin cos ✓) = (x cos ✓ � y sin ✓, x sin ✓ + y cos ✓).

Claim: TR is a subgroup of Bij(R2,R2).
Proof: It su�ces to show that RT ⇢ TR, as then TRTR ⇢ TTRR ⇢ TR, so TR is closed
under multiplication. We consider an element ⇢✓ta,b. Then ⇢✓ta,b(x, y) = ((x+a) cos ✓� (y+
b) sin ✓, (x + a) sin ✓ + (y + b) cos ✓) = (x cos ✓ � y sin ✓ + a cos ✓ � b sin ✓, x sin ✓ + y cos ✓ +
a sin ✓ + b cos ✓) = t⇢✓(a,b)(x cos ✓ � y sin ✓, x sin ✓ + y cos ✓) = t⇢✓(a,b)⇢✓ 2 TR.

We conclude that TR is a group and is isomorphic to (R⇥R)o
�
(R/2⇡Z) with � : (R/2⇡Z) !

Aut(R⇥R) defined by ✓ 7! �(✓)(a, b) = (a cos ✓ � b sin ✓, a sin ✓ + b cos ✓).
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Claim (for later): TR is Isom+(R2), the orientation-preserving isometries of R2.

Now we consider F = {id, reflect about x axis} ⇠= {1,�1}.
Claim: TRF is a subgroup of Bij(R2,R2).
Proof: It su�ces to show that FTR = TRF , as then TRFTRF ⇢ TT (RF )(RF ) ⇢ TRF,
so TRF is closed under multiplication. We can show that F (TR) = (TR)F by showing
f � ta,b � ⇢✓ = ta,�b � ⇢�✓ � f . (Exercise.)

We conclude that TRF ⇠= ((R ⇥ R) o
�
(R/2⇡Z)) o

 
Z/2Z with � defined in the same

way as before and  : Z/2Z ! Aut((R ⇥ R) o
�
(R/2⇡Z)) defined with 1 7! id and

�1 7!  
1

((a, b), ✓) = ((a,�b),�✓).
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Lecture 10
September 25

Rings:

Definition: A commutative ring is a set R with two operations +, · and two distinguished
elements 0, 1 (0 6= 1) such that
1. (R,+) is a commutative group with identity 0.
2. (R, ·) is a commutative monoid with identity 1.
3. 8 a 2 R,ma : R ! R defined with a 7! ax is a group homomorphism of (R,+).

These properties of a ring can also be written in the following way:
Identity under + : 0 + a = a+ 0 = a
Associativity under + : (a+ b) + c = a+ (b+ c)
Commutativity under + : a+ b = b+ a
Invertibility under + : 8 a, 9(�a) such that a+ (�a) = (�a) + a = 0
Identity under · : 1 · a = a · 1 = a
Associativity under · : (a · b) · c = a · (b · c)
Commutativity under · : a · b = b · a
Distributivity of · over + : a · (b+ c) = a · b+ a · c.

Examples of Rings:
Z, Z/nZ with +, · mod n, Z[x] : polynomials in x with integer coe�cients, R[x], Z[x, y].

Fields:

Definition: A field is a set with distinguished elements 0, 1 and operations +, · such that
1. (F,+) is a commutative group with identity 0.
2. (F � {0}, ·) is a commutative group with identity 1.
3. 8 a 2 F,ma : F ! F defined with a 7! ax is a group homomorphism of (F,+).

Fields have the same properties of rings listed above, but also obey the following:
Invertibility under ·: 8 a 2 F, a 6= 0, 9 a�1 such that a�1 · a = a · a�1 = 1.

Examples of Fields:
Q: the rational numbers, R: the real numbers, C: the complex numbers, R(x): the rational
functions of the form polynomial / polynomial, Q[

p
2] = {a+ b

p
2 | a, b 2 Q} ⇢ R ⇢ C.

We shall check this last example:
Closure under · : (a+ b

p
2)(c+ d

p
2) = (ac+ 2bd) + (ad+ bc)

p
2

Closure under Inversion: (a+b
p
2)�1 = (a�b

p
2)/(a2�2b2) = (a/(a2�2b2))�(b/(a2�2b2))

p
2

We shall also check the complex numbers, which can also be expressed as C = R[i] =
{a+ bi | a, b 2 R}:
Closure under · : (a+ bi)(c+ di) = (ab� cd) + i(ad+ bc)
Closure under Inversion: (a+ bi)�1 = (a� bi)/(a2 + b2) = (a/(a2 + b2))� (b/(a2 � 2b2))i

In addition, Z/pZ is a field with p prime because:
1. Z/pZ is a group under +.
2. (Z/pZ)⇤ is a group under ·.
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3. ma : Z/pZ! Z/pZ is a homomorphism, as we saw earlier that Aut(Z/pZ,+) ⇠= (Z/pZ)⇤

Examples and Non-Examples:
Z/2Z = {0, 1} is a field with multiplication and addition modulo 2.
Z/4Z is not a field because 2 has no multiplicative inverse. Even worse, 2 · 2 ⌘ 0 mod 4, so
2 is a zero divisor.

For a four-element field, consider F
4

= Z/2Z ⇥ Z/2Z as an additive group. Its elements
are {0, 0}, {1, 0}, {0, 1}, {1, 1}. {0, 0} is the additive identity and {1, 1} is the multiplicative
identity. F

4

� {0} = {1, 0}, {0, 1}, {1, 1} = {1, x, x2} must be the cyclic group C
3

. We also
check the distributive law. We see that Aut(F

4

) ⇠= S
3

, so the three maps m
1

,mx,mx2 each
fix (0, 0) and permute the other elements.

Vector Spaces over F :

Definition: A vector space over F is an abelian group V with operation + and identity
1 and a map (scalar multiplication) : F ⇥ V ! V , defined with (a, v) 7! ma(v), such that
1. ma(v + w) = ma(v) +ma(w)
2. mab(v) = ma �mb(v).
Equivalently, we can define it as a group and a homomorphism : F ! Aut(V ) defined with
a 7! ma.

Definition: Given W ⇢ V , W is a subspace if it is a subgroup such that ma|W : W !
W 8 a 2 F .

Definition: If V,W are two vector spaces over F , A is a linear map if A : V ! W is a homo-
morphism of (V,+) to (W,+), i.e., A(v+w) = A(v) +A(w) and such that ma �A = A �ma

and aA(v) = A(av). Another way to fulfill the last two conditions is that this diagram
commutes:

V W

V W

A

ma ma

A

.

An isomorphic map of vector spaces is a linear map with an inverse linear map.

Quotients:

Let V and W be vector spaces over F with W ⇢ V . Then V/W is a vector space over
F . We wish to show that its quotient V/W is a group. We choose ⇡ : V ! V/W as a
quotient map (also a group homomorphism). We know that W ⇢ ker(⇡ �ma). Thus by the
Universal Property of the Quotient, 9! mW

a : V/W ! V/W such that mW
a � ⇡ = ⇡ �ma. In

other words, the following diagram commutes:

V V

V/W V/W

ma

⇡ ⇡

9! mW
a

.

We also need to check that mW
ab = mW

a �mW
b works as well.
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Proof: The diagram commutes:

V V V

V/W V/W V/W

ma

⇡

mb

⇡ ⇡

9! mW
a 9! mW

b

.

Example of a Vector Space:

Fn = F ⇥ · · ·⇥ F
n times

. This is a direct product of additive groups. Scalar multiplication is

defined with a(x
1

, x
2

, . . .) = (ax
1

, ax
2

, . . .)

Three Definitions:
A spanning set is a surjection � : Fn ! V.
A linearly independent set is an injection � : Fn ! V.
A basis is an isomorphism � : Fn ! V.
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Lecture 11
September 27

More on Vector Spaces (Bases, Subspaces Dimensions):

Remarks on Vector Spaces:
Claim: GivenG,H two abelian groups, Hom(G,H) = {� : G ! H | � is a group homomorphism}
is an abelian group under part-wise additions.
Proof: Let �, : G ! H. Then (� +  )(g) = �(g) +  (g) 2 H and (� +  )(g

1

+ g
2

) =
�(g

1

) +  (g
1

) + �(g
2

) +  (g
2

) = (�+  )(g
1

) + (�+  )(g
2

). Thus �+  is a homomorphism.

Furthermore: Hom(G,G) with G abelian is a non-commutative ring with addition as above
and multiplication being composition of homomorphisms (which is non-commutative).
A map from F to Hom(V ) is a ring homomorphism, i.e. with ma being a group homomor-
phism, ma+b = ma +mb and ma+b = ma +mb.

A list of elements v = (v
1

, . . . , vn) corresponds to a map �v : Fn ! V defined with ei 7! vi.
(Here ei corresponds to a n-element list of zeroes with a one in the ith spot. It is often
represented by a column vector.)

Thus:
v is a linearly independent set if �v is an injection, i.e.

P
aivi with ai 2 F has no repeats in

v.
v is a spanning set if �v is a surjection, i.e.

P
aivi with ai 2 F contains every element of v.

v is a basis if �v is an isomorphism, i.e.
P

aivi with ai 2 F contains every element of v
exactly once.

Proposition: The following are equivalent:
1. (v

1

, . . . , vn) forms a basis.
2. (v

1

, . . . , vn) spans V and no proper subcollection spans.
3. (v

1

, . . . , vn) is a linearly independent set and 8 v 2 V, (v, v
1

, . . . , vn) is not a linearly
independent set.
Proof:
1 =) 2 and 1 =) 3 by definition.
2 =) 1: Suppose (v

1

, . . . , vn) is not linearly independent, i.e.
P

aivi = 0 with not all
ai = 0. Without loss of generality, let a

1

6= 0. Then v
1

= (
Pn

i=2

aivi)/a1. Then (v
2

, . . . vn)
spans V , which is a contradiction of our assumption that no proper subcollection spans V .
Thus (v

1

, . . . , vn) must be linearly independent and thus forms a basis.
3 =) 1: We can show that (v

1

, . . . , vn) spans, i.e. given any v 2 V , we can express v as a
linear combination of the vi. (v, v

1

, . . . , vn) is not linearly independent, so av +
P

aivi = 0
with not all ai = 0. If a = 0, then (v

1

, . . . , vn) is not linearly independent, which is a contra-
diction. Thus a 6= 0 and v = (�P aivi)/a. Thus (v1, . . . , vn) spans V and is thus a basis.

Corollary: If V is finitely generated as a vector space (i.e. the same finite collection
spans), then it has a basis.
Proof: We take a spanning set and find the minimal spanning subset by induction. By 2,
this is a basis.

Corollary: Any finitely generated vector space is isomorphic to Fn.
Proof: Exercise.
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Dimension:

Theorem: Given a spanning set (v
1

, . . . , vn) and a linearly independent set (w
1

, . . . , wm) in
V , then n � m
Proof: By induction on m. The base case of m = 0 is trivial. In the inductive step, we
assume that this holds for smaller m. We write w

1

as a sum of aivi. At least one of the ai
is not 0. Without loss of generality, let a

1

6= 0. Then we can write v
1

in terms of the the
remaining vi, i.e. v1 = (w

1

�Pn
i=2

aivi)/a). So (w, v
2

, . . . , vn) is a spanning set.

We now consider V/hw
1

i and the surjective map ⇡ : V ⇣ V/hw
1

i. We call hw
1

i = {aw | a 2
F} ⇢ V “the subspace generated by w

1

.”

Claim:
1. (v

2

, . . . , vn) spans V/hwi.
2. (w

2

, . . . , wm) is linearly independent.
Here v = ⇡(v).
Proof:
1. Given ⇡(v) 2 V/hw

1

i (⇡ is surjective, so this a general element), we want to express ⇡(v)
as a linear combination of the vi. We know from constructing our previous spanning set that
v = a

1

w
1

+
Pn

i=2

aivi. Thus ⇡(v) =
Pn

i=2

aivi and (v
2

, . . . , vn) spans V/hwi.
2. Suppose not. Then

Pm
i=2

ai⇡(wi) = 0 =) ⇡(
Pm

i=2

aiwi) = 0 =) Pm
i=2

aiwi 2 hw
1

i =)Pm
i=2

aiwi = aw
1

. Thus we have expressed w
1

in terms of the other wi, which contradicts our
earlier definition of (w

1

, . . . , wm) as a linearly independent set. Thus (w
2

, . . . , wm) is linearly
independent.

Corollary: All bases of a finitely generated vector space V have the same size. (This
is known as the dimension of V ).
Proof: Each basis spans and is linearly independent, so m  n and n  m, so m = n.

Corollary: If W ⇢ V , then dim(W )  dim(V ), with equality if and only if W = V
(assuming V is finite dimensional).
Proof: We can extend a basis of W , which is a linearly independent set in V to a basis of
V by adding elements that are not spanned.

Corollary: Fn ⇠= Fm , m = n

Theorem: If W ⇢ V , then dim(W ) + dim(V/W ) = dim(V ).
Sketch of Proof:
Claim: Given (w

1

, . . . , wm) as a basis for W and (u
1

, . . . , un) such that (⇡(u
1

), . . . ,⇡(un))
is a basis for V/W . Then (w

1

, . . . , wm, u
1

, . . . , un) is a basis for V .

Suppose T : V ! W is a linear map transformation. The kernel and the image of this
transformation are subspaces of V and W , respectively.

Corollary (Rank-Nullity Theorem): dim(ker(T )) + dim(im(T )) = dim(V ).
Proof: We can express T as a surjective map from V to im(T ). The First Isomorphism The-
orem then tells us that V/ ker(T ) ⇠= im(T ). Let T : V/ ker(T ) ! im(T ) be the isomorphism.
Then dim(ker(T )) + dim(im(T )) = dim(V ) by the previous theorem. The following diagram
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will also commute:

V im(T )

V/ ker(T )

T

⇡
T

.

Remark: In fact, T is linear and is an isomorphism of vector spaces. We know that T (⇡(v)) =
T (v) by definition. Then T (a⇡(v)) = T (⇡(av)) = T (av) = aT (v) = aT (⇡(v)). T is bijec-
tive because it is an isomorphism of abelian groups. We can see that T�1 is also linear:

T
�1

(w) = v =) T (av) = aw =) T
�1

(aw) = av = aT
�1

(v).
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Lecture 12
September 30

Matrix of a Linear Transformation:

We consider the map T : V ! W , which we say is F -linear, where V,W are finite-dimensional
vector spaces over F with dimensions n and m. We can choose bases for V and W by us-

ing the following isomorphisms: � : Fn
⇠
=�! V with ei 7! �(ei) = vi for 1  i  n and

 : Fm ! W with ei 7!  (ei) = wi for 1  i  m. Note that {vi | 1  i  n} and
{wi | 1  i  m} are bases of V and W , respectively. We can also express this with a
diagram:

Fn Fm

V W

A

� ⇠
=

 ⇠
=

T

.

We define the map A : Fn ! Fm as A =  �1 � T � � because the diagram must commute.
Equivalently, given A, we can define T : V ! W as T =  �A � ��1

Thus if we are given a linear map A : Fn ! Fm, it is completely determined by its values on
the basis, i.e. {A(ek) | 1  k  n}. This makes sense, because any v 2 V can be expressed
as v =

P
k ckek and A(v) =

P
k ckA(ek), because A is linear.

We can also express each the value A takes on each basis vector in the basis of Fm, i.e.
A(ek) =

P
j Ajkej , where {ej | 1  j  m} is the basis for Fm. In matrix form this looks

like:

2

64
A

1k
...

Amk

3

75

| {z }
m⇥n

·

2

6666664

0
...
1
...
0

3

7777775

|{z}
n⇥1

=

2

64
A

1k
...

Amk

3

75

| {z }
m⇥1

.

Note that the 1 in the second matrix is in the kth spot, as the matrix represents the basis
vector ek 2 V .

Now we consider the composition of two linear transformations. We choose B : Fm ! F `,
so B � A : Fn ! F `. If we let {ek | 1  j  m}, {ej | 1  j  m},and {ei | 1  j  m}
be bases of Fn, Fm, and F `, respectively, we can see how this composition acts on a basis
vector of V : BA(ek) = B(

P
j Ajkej) =

P
i

P
j BijAijei. If we examine this in matrix form:

2

4Bi1 · · · Bim

3

5

| {z }
`⇥m

·

2

64
A

1k
...

Amk

3

75

| {z }
m⇥n

·

2

6666664

0
...
1
...
0

3

7777775

|{z}
n⇥1

=

2

64
(BA)

1k
...

(BA)`k

3

75

| {z }
`⇥1

,

we find that (BA)ik =
P

j BijAjk. Thus, once we have fixed a basis, we can view composition
of linear functions as analogous to matrix multiplication.
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Change of Basis:

Consider the diagram:

Fn Fm

V W

Fn Fm

A =  �1
1 � T � �1

C = ��1
2 � �1

�1
⇠
=

 1

⇠
=

D =  �1
2 �  1

T

�2
⇠
=

B =  �1
2 � T � �2

⇠
=

 2
.

The linear maps C : Fn ! Fn and D : Fm ! Fm are called the change of basis maps. Their
definitions in terms of the isomorphisms come from the requiring that the above diagram
commutes. This requirement also gives us another expression for B, namely B = D�A�C�1.

Now we examine the case where V = W . The diagram becomes

Fn Fn

V V

Fn Fn

A = ��1
1 � T � �1

C = ��1
2 � �1

�1
⇠
=

�1
⇠
=

C = ��1
2 � �1T

�2
⇠
=

B = ��1
2 � T � �2

⇠
=

�2
.

Requiring that this diagrams commutes yields B = C �A �C�1. Thus we see that changing
the basis conjugates the matrix representation of the linear map by the change of basis matrix.

Definition: An endomorphism is a homomorphism from an object to itself. If this ob-
ject is a vector space, then an endomorphism is a linear map.
Note that if an endomorphism is invertible, then it is an automorphism as well. Then set
of endomorphisms is denoted End(V ) = HomF (V, V ). The general linear group on V is
GL(V ) = {T 2 End(V ) | T is invertible} aka the automorphisms. This could also be written
as GL(Fn) or GLn(F ), although this notation technically refers to the matrices associated
with these maps.

A big topic is understanding linear transformations up to a change of basis, i.e. up to
conjugations by invertible linear transformations. We would like to have a broader under-
standing of linear transformations independent of a basis. This is equivalent to understanding
the conjugacy classes of GL(V ) (or even End(V ) under conjugation by elements of GL(V )).
More on this later.

Claim: Sets of the form {x 2 G |, x = hgh�1 for some h 2 G} partition G.
Proof: Delayed.

Definition: An equivalence relation is a relation ⇠, (i.e. a subset of S ⇥ S, which we
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think of as being the set of (a, b) such that a ⇠ b is true) such that it obeys the following:
1. Reflexivity: 8 a 2 S, a ⇠ a.
2. Symmetry: 8 a, b 2 S, a ⇠ b =) b ⇠ a.
3. Transitivity: 8 a, b, c 2 S, a ⇠ b, b ⇠ c =) a ⇠ c.

Proposition: Sets of the form Sa = {x 2 S | a ⇠ x} partition S.
Proof: Exercise, or see section 2.7.

We now define a conjugation equivalence relation⇠
conj

onG : x ⇠
conj

y , 9 h 2 G such that x =
hyh�1. If x ⇠

conj

y we say x and y are conjugate.

Proof from before: Thus the sets of the form {x 2 G |, x = hgh�1 for some h 2 G} are
the partitioning sets for the above equivalence relation. These must partition G by the above
proposition. These sets consist of all conjugate elements and are called the conjugacy classes
of G.

Examples of Conjugacy Classes:

1. If G is abelian, each conjugacy class is one element.

Remark: 1 2 G is always alone, i.e. {1} is a conjugacy class. (This actually holds for
anything in Center(G)).

2. S
3

= {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)
The conjugacy classes are {1}, {(1 2), (1 3), (2 3)}, {(1 2 3), (1 3 2)}. We can quickly see that
the third is true by considering the following diagram:

{1, 2, 3} {1, 2, 3}

{1, 2, 3} {1, 2, 3}

(1 2 3)

1 7! 1

2 7! 3

3 7! 2

(1 3 2)

1 7! 1

3 7! 2

2 7! 3 ,

which tells us that (1 2 3) = (2 3)�1(1 3 2)(2 3) = (2 3)(1 3 2)(2 3).

Proposition: The conjugacy classes of Sn correspond to ways to partition n into n =
n
1

+ n
2

+ · · ·+ nk without order of the ni.
Proof: Exercise.

We recall that we wish to find properties of linear transformations in End(V ) that have
no reference to basis.

One of these is the concept invariant subspaces.
Definition: W ⇢ V is T -invariant if 8 w 2 W,Tx 2 W.

Examples:

Proposition: ker(T ), im(T ), ker(T k) and im(T k) for any k 2 Z�0

are invariant.
Proof:
ker(T k) : By definition, v 2 ker(T k) if T k(v) = 0. Then Tv 2 ker(T k) because T k(Tv) =
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TT k(v) = T (0) = 0.

im(T k) : By definition, v 2 im(T k) if 9 w such that T k(w) = v. Then Tw 2 im(T k)
because T k(T (w)) = T k+1(w) = T (T k(w)) = T (v).

Suppose Tv = �v for some � 2 F . i.e. v is an eigenvector of T with an eigenvalue of
�. Then hvi = {av | a 2 F} is T -invariant.
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Lecture 13
October 4

Midterm Problems

3a. Find a nonabelian group of order 21.
We know that there must be an element of order 3 and an element of order 7, i.e. an element
in Z/3Z and an element in Z/7Z. However these groups are abelian. One way to negate
this is to use a semidirect product Z/7Z o

�
Z/3Z. We define � : Z/3Z ! Aut(Z/7Z) with

1 7! m
2

. Another solution is to consider the groups {1, x, x2} and {1, y, . . . y6}, and to choose
{xayb | a 2 Z/3Z, b 2 Z/7Z}, but there is a lot to check here to be consistent.

3b. Identify Aut(Z/8Z) with a familiar group
We can think of the automorphisms of permutations of the elements, i.e. there is a map
Z/8Z ,! S

8

.
There is a generator 1 2 Z/8Z. Thus if � : Z/8Z ! Z/8Z is a homomorphism, �(1)
completely determines �. Thus we have 8 homomorphisms � : Z/8Z ! Z/8Z defined with
1 7! 0, 1, 2, 3, 4, 5, 6, 7. We call these homomorphisms m

0

,m
1

, . . .m
7

, (multiplication by 0,
multiplication by 1, etc.). Which of these are bijections? We examine the kernels. m

0

has
the entire set as its kernel. m

2

has a kernel of {0, 4}, etc. We see that multiplication by an
even number with have a nontrivial kernel. Thus only m

1

, m
3

, m
5

, and m
7

are bijective.
Now we examine the composition. m

3

�m
3

= m
9

= m
1

, m
3

�m
5

= m
15

= m
7

, etc. Thus
we see that each element has order 2, as m

1

is the identity, and the composition of two
distinct non-identity elements yields the third non-identity element. Thus this is the Klein
Four Group.

Back to Linear Algebra: Eigenvalues and Eigenvectors

Let V be a finite dimensional vector space over a field F and let T : V ! V be an F -
linear map, i.e. F 2 End(V ). Note that T is not necessarily invertible.

Definition: v 6= 0 is an eigenvector of T with eigenvalue � if Tv = �v.

Remark: If � is an eigenvalue of T , then is is an eigenvalue of ATA�1, i.e. an eigenvalue is
independent of a basis.

Claim: If v
1

, . . . , vk are eigenvectors with distinct eigenvalues �
1

, . . . ,�k. Then v
1

, . . . , vk
are linearly independent.
Proof: We shall induct on k. The base case is trivial, as a single vector is linearly indepen-
dent. In our inductive step, we suppose that our claim is true for n < k, but false for n = k.
Then

Pk
i aivi = 0 with some ai 6= 0. Without loss of generality, we assume that a

1

6= 0.

Then T (
Pk

i aivi) =
Pk

i �iaivi = 0. Then we multiply the first equation by �
1

and subtract it

from out second one. This yields
Pk

i �iaivi�
Pk

i �1aivi =
Pk

i=2

(�i��1)aivi = 0. Note that
�i��

1

6= 0. We now consider that actually at least two elements of {ai | 1  i  k} must be
nonzero, or else this reduces to the base case. Thus at least one element of {ai | 2  i  k}
must be nonzero. Thus the coe�cients (�i � �

1

)ai cannot all be zero. This implies that
v
2

, . . . , vk is not linearly independent, even though the vectors have distinct eigenvalues.
This contradicts the inductive step, because we have assumed that this holds for n < k.
Thus it must hold for n = k, i.e. v

1

, . . . , vk is linearly independent.
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Definition: The spectrum of T is Spec(T )= {� 2 F | � is an eigenvalue of T}.

Corollary: |Spec(T )|  | dim(V )|.
Remark: Spec(T ) can be empty, e.g. V = R2, F = R, T =


0 �1
1 0

�
. Here T is is a rotation

by ⇡/2, which has no eigenvectors and thus no eigenvalues.

Definition: A field F is algebraically closed if, given any polynomial over F , i.e. p(x) =

a
0

+ a
1

x+ · · ·+ akxk with k � 1, ak 6= 0, then there exists c 2 F such that p(c) = 0.

Examples:

R is not algebraically closed, let p(x) = x2 + 1. C is by the Fundamental Theorem of
Algebra, which we will not prove here.

What about Fp = Z/pZ? It is not.
Proof: Consider the map � : (Z/pZ)⇤ ! (Z/pZ)⇤ given by a 7! a2. This a homomorphism,
as (ab)2 = a2b2.

Subclaim: The only a 2 Z/pZ such that a2 = 1 are ±1.
Proof: Suppose p | a2� 1. Then p | (a+1)(a� 1), so p | a+1 or p | a� 1. This corresponds
to a = ±1. (Note that if p = 2, 1 ⌘ �1).
Since | ker(�)| · |im(�)| = p�1 and | ker(�)| = 2 this means that the image of � only contains
half the elements of (Z/pZ)⇤.

Corollary: There exist (p � 1)/2 values of c 2 Z/pZ such that x2 � c = 0 has no so-
lutions mod p.

Proposition: If p(x) = a
0

+ a
1

x + · · · + akxk k � 1, ak 6= 0 is a polynomial of degree
of at least 1 over an algebraically closed field, then there exists r

1

, . . . , rk (possibly with
repeats) such that p(x) = d

Qk
i=i(x� ri).

Proof: First we need to know how to divide with remainder: Given p(x), f(x), there exist
polynomials q(x), r(x) with deg(r(x))  deg(f(x)) such that p(x) = q(x) ·f(x)+r(x) (Proof
as Exercise).
Now suppose r

1

is a root. Then divide by x�r
1

: p(x) = q(x)(x�r
1

)+c. Note c = p(r
1

) = 0.
We then induct on the degree of p.
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Lecture 14
October 7

More on Eigenvalues

Proposition: Any endomorphism T 2 End(V ) with V a finite-dimensional vector space
over F , where F is algebraically closed (e.g. C), has an eigenvalue.
Proof: Let dim(V ) = n. So if we take some v 2 V, v 6= 0, then v, Tv, T 2, . . . Tnv can’t be lin-
early independent, as it is a list of n+1 vectors. Then there exists a set {a

0

, a
1

, . . . , an} with
not all ai = 0 such that a

0

v+a
1

Tv+ · · ·+anTnv = 0. Note that a
0

can’t be the only nonzero
coe�cient either, because v 6= 0. Now let k be the largest index such that ak 6= 0. We then
have a

0

v+a
1

Tv+· · ·+akT kv = 0 with ak 6= 0 k � 1. Consider p(x) = a
0

+a
1

x+· · ·+akxk = 0,
a polynomial over F . F is algebraically closed, so 9 {�

1

, . . .�k} (not necessarily distinct)
and 9 c 2 F, c 6= 0 such that p(x) = c(x � �

1

)(x � �
2

) · · · (x � �k). Note that c = ak.
Now let P (T ) = a

0

I + a
1

T + · · · + akT k 2 End(V ), a linear map from V to V . We
have P (T )v = 0, v 6= 0. We also have P (T ) = c(T � �

1

I)(T � �
2

I) · · · (T � �kI), so
c(T � �

1

I)(T � �
2

I) · · · (T � �kI)v = 0. Thus 9 j 2 [1, k] such that T � �jI has a non-
trivial kernel. We take w 2 ker(T � �jI). Then Tw � �jw = 0, so Tw = �jw.

Toward Jordan Normal Form

We’ll show (over an algebraically closed field F and a finite-dimensional vector space V
over F ) that any T 2 End(V ) has a decomposition T = T diag + T nilp (diagonalizable and
nilpotent).

Definition: A linear map T is diagonalizable if it has a basis of eigenvectors, i.e. there
exists a basis such that in this basis the matrix for T is diagonal, with the eigenvalues along
the diagonal.

Definition: A linear map T is nilpotent if 9 k 2 Z�1

such that T k = 0.

Example:

A !
2

4
0 3 7
0 0 2
0 0 0

3

5 A2 !
2

4
0 0 6
0 0 0
0 0 0

3

5 A3 !
2

4
0 0 0
0 0 0
0 0 0

3

5

More on Invariant Subspaces

Recall that W ⇢ V is T -invariant if Tw 2 W 8 w 2 W.

Examples:
-hvi (the subspace generated by v) with v being an eigenvector of T .
-ker(T ), and in fact ker(T k) for any k 2 Z�0

-im(T ), and in fact im(T k) for any k 2 Z�0

Note that V � im(T ) � im(T 2) � · · · � im(T k) � im(T k+1)

Claim: If n = dim(V ) and k 2 Z�0

, then im(Tn) = im(Tn+k) and T is invertible on
this im(Tn).
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Proof: Look at the smallest ` such that im(T `) = im(T `+1). (Such an ` exists because
im(T `) ) im(T `+1) can only happen for at most n values of `). Then T |

im(T `
)

is invertible,

and we see that im(T `) = im(T `+k) for all k � 0. So im(T dim(V )) = im(T dim(V )+k), k � 0.
Also, consider 0 2 ker(T ) ⇢ ker(T 2) ⇢ · · · . This must stabilize (i.e., become a sequence
of equality and not subsumption) at ker(T dim(V )) or sooner because dim(ker(T dim(V ))) +
dim(im(T dim(V ))) = dim(V ) by Rank-Nullity.

Example:

T !

2

664

2 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775 T 2 !

2

664

4 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

3

775 T 3 !

2

664

8 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775

We can derive the following.
ker(T ) = {(0, b, 0, 0)} and im(T ) = {(a, b, c, 0)}
ker(T 2) = {(0, b, c, 0)} and im(T 2) = {(a, b, 0, 0)}
ker(T 3) = {(0, b, c, d)} and im(T 3) = {(a, 0, 0, 0)}.
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Lecture 15
October 9

Direct Sums

Definition: Given V, W , two vector spaces over F , the direct sum V � W = {v + w |
v 2 V, w 2 W} is another vector space over F with addition and scalar multiplication.

We can also define
nL

i=1

Vi similarly. We also consider an “internal” sum. Given W
1

,W
2

⇢ V,

we can form W
1

+W
2

= {v 2 V | v = w
1

+ w
2

, w
1

2 W
1

, w
2

2 W
2

}.

Proposition: If W
1

\W
2

= {0}, then W
1

+W
2

⇠= W
1

�W
2

.
Proof: We form a linear map T : W

1

� W
2

! W
1

+ W
2

⇢ W with w
1

+ w
2

7! w
1

+ w
2

.
This is trivially surjective. To show that it is injective, consider w

1

+ w
2

= w0
1

+ w0
2

. Then
w
1

� w0
1

= w
2

� w0
2

. Then left hand side is in W
1

, and the right hand side is in W
2

. Then
w
1

� w0
1

= w
2

� w0
2

= 0 =) w
1

= w0
1

and w
2

= w0
2

.

We also discussed ker(T dim(V )) and im(T dim(V )), two T -invariant subspaces. We saw that
0 ⇢ ker(T ) ⇢ ker(T 2) ⇢ · · · ⇢ ker(T dim(V )) and V � im(T ) � im(T 2) � · · · � im(T dim(V )).
As an example, consider

T !

2

664

2 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775 T 2 !

2

664

4 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

3

775 T 4 !

2

664

16 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775

ker(T 2) = span(e
2

, e
3

) and ker(T 4) = span(e
2

, e
3

, e
4

).
im(T 2) = span(e

1

, e
2

) and im(T 4) = span(e
1

).

Claim:
1. ker(T dim(V )) \ im(T dim(V )) = {0}.
2. V ⇠= ker(T dim(V ))� im(T dim(V )).
Proof:
1. T is nilpotent on ker(T dim(V )), i.e. (T |

ker(Tdim(V )
)

)k = 0 for some k. (In fact, k = dim(V )

works). Note that T |
ker(Tdim(V )

)

: ker(T dim(V )) ! ker(T dim(V )).

Now consider T |
im(Tdim(V )

)

: im(T dim(V )) ! im(T dim(V )). We know that im(T dim(V )) ⇢
im(T ), so im(T |

ker(Tdim(V )
)

) = im(T dim(V )). Thus by Rank-Nullity, ker(T |
im(Tdim(V )

)

) = {0}
So here T is invertible on im(T dim(V )). Thus ker(T dim(V )) [ im(T dim(V )) = {0} because we
can’t have a nonzero vector v 2 im(T dim(V )) such that T kv = 0 with T invertible on this
subspace because T k is also invertible. Thus we cannot have a nontrivial intersection.
2. Thus ker(T dim(V )) + im(T dim(V )) ⇠= ker(T dim(V )) � im(T dim(V )), and by Rank-Nullity,
dim(ker(T dim(V ))� im(T dim(V ))) = dim(V ). Thus V ⇠= ker(T dim(V ))� im(T dim(V )).

So far we have V split into two T -invariant subspaces, with T nilpotent on one and in-
vertible on the other. This is equivalent to having the matrix in the following block form:


Nilp 0
0 Inv

�
.
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Definition: The generalized eigenspace V (�) of T : V ! V with eigenvalue � is defined

as V (�) = ker((T � �I)dim(V )).

Remark: The eigenspace of T with eigenvalue � is V� = ker(T � �I). Note V� ⇢ V (�).

Claim: V (�) \ V (µ) = {0} if � 6= µ.
Proof: We will show that T � �I is nilpotent on V (�) = ker((T � �I)dim(V )). We first
claim that T � �I is invertible on V (µ). We know that V (µ) is (T � µI)-invariant and
also invariant under cI for any c. So it is also (T � �I)-invariant and T -invariant. We
can use this to find the inverse of T � �I. We know that T � µI is nilpotent on V (µ).
(T � �I) = (T � µI) + (µ� �)I = c(I �N), with c = µ� � and N = (�1/(µ� �))(T � µI)
(which is nilpotent).
Note (1�x)(1+x+x2+· · ·+xk�1) = 1�xk. so c(I�N)1c (I+N+N2+· · ·+Nk�1) = I�Nk = I.
(We chose k such that Nk = 0, e.g. k = dim(V )). So c(I � N) = T � �I is invertible on
V (µ) (and its inverse is 1

c (I +N +N2 + · · ·+Nk�1)). Thus V (�) \ V (µ) = {0} by the same
argument as before.

Theorem: If F is algebraically closed, then V ⇠= L
�2Spec(T )

V (�). Here T = �I + (T � �I)

(We know that T ��I is nilpotent on V (�)). This theorem gives us a matrix in the following
block form:

2

66664

�
1

I +N
1

0 0

0 �
2

I +N
2

...
... 0

. . . 0
0 0 �kI +Nk

3

77775
.

Proof: We induct of the number of elements in Spec(T ), i.e., the number of distinct eigen-
values. The base case is #(Spec(T )) = 1. (It can’t be 0 if dim(V ) � 1 because F is
algebraically closed). Then V ⇠= V (�) � im((T � �I)dim(V )). Consider T |

im((T��I)dim(V )
)

.

If dim(im((T � �I)dim(V )) � 1, then T has an eigenvalue here. This eigenvalue can’t be �,
which is a contradiction. The inductive step is #(Spec(T ) = k. Let �k 2 Spec(T ). Then
V ⇠= V (�k) � im(T � �kI)dim(V ). T is invariant on both of these spaces.

Claim: Spec(T |
im((T��kI)dim(V )

)

) = {�
1

, . . . ,�k�1

}
Proof: We claim that if v is an eigenvector with eigenvalue �j (j 6= k), then v 2 im((T �
�kI)dim(V )). We know that v = v

1

+v
2

with v
1

2 V (�k), and v
2

2 im((T ��kI)dim(V )). We’re
claiming that v

1

= 0. Suppose Tv = �jv then (T ��kI)dim(V )v
1

= 0 because (T ��kI)dim(V )

sends v
1

to something in V (�k) and v
2

to something in im(T � �kI)dim(V ). Then v
1

= 0

because v
1

2 V (�j), and V (�) \ V (�k) = {0}. By induction, im(T � �kI)dim(V ) =
k�1L
j=1

V �j .
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Lecture 16
October 11

More on Eigenspace and Nilpotent Maps

Recall our generalized eigenspace V (�) = ker((T � �I)dim(V )) with T : V ! V a linear
map over a field F .

Suppose T is nilpotent. We have 0 ( ker(T ) ( ker(T 2) ( · · · ( ker(Tn) = ker(Tn+1).
We also have ker(Tn�1) ( ker(Tn), with n the smallest positiver integer such that ker(Tn) =
ker(Tn+1). We would like to find a basis for the complement of ker(Tn�1). This can be
done by choosing {v

1

, . . . v`} such that ker(Tn) ⇠= ker(Tn�1)�Fv
1

� · · ·�Fv`. To construct
this set, we just take ker(Tn)/ ker(Tn�1) and choose a basis {u

1

, . . . u`}. Then we choose
{v

1

, . . . v`} such that ⇡(vj) = uj . with ⇡ : ker(Tn) ! ker(Tn)/ ker(Tn�1)). We now consider
{v

1

, . . . v`, T v1, . . . T v`, T 2v
1

, . . . T 2v`, . . . Tn�1v
1

, . . . Tn�1v`}.

Claim: These vectors are linearly independent.
Proof: Suppose they are not. Then we have a nontrivial linear combination equal to zero.
Let j be the smallest number such that there exists a nonzero coe�cient of some T jvi in our
linear combination. Then we apply Tn�j�1 to our linear combination. This will map all T kvi
with k > j to zero. Thus we find c

1

Tn�1v
1

+· · ·+c`Tn�1v` = Tn�1(c
1

v
1

+. . . c`v`) = 0. This is
a contradiction, because {v

1

, . . . v`} give a basis (via ⇡ from before) of ker(Tn)/ ker(Tn�1), i.e.
they form a basis of the complement of ker(Tn�1), so any nontrivial linear combination cannot
be in ker(Tn�1). Thus {v

1

, . . . v`, T v1, . . . T v`, T 2v
1

, . . . T 2v`, . . . Tn�1v
1

, . . . Tn�1v`} is a lin-
early independent set. This gives us the following block in the basis {Tn�1v

1

, . . . v
1

, . . . Tn�1v`, . . . T v`}:
2

6666666666666666666666666664

2

66664

0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0

3

77775
0 . . . 0

0

2

66664

0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0

3

77775
. . . 0

...
...

. . .
...

0 0 . . .

2

66664

0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0

3

77775

3

7777777777777777777777777775

where each block along the diagonal corresponds to span(Tn�1v
1

, . . . v
1

) through span(Tn�1v`, . . . Tn�1v`).
Note that this block consists of ` blocks on the diagonal of size n⇥ n.

Now we consider ker(Tn�2) ⇢ ker(Tn�1). We consider the complement of ker(Tn�2) in
ker(Tn�1) and {Tv

1

, . . . T v`}. We would like to form a basis for these combined sets. These
are both linearly independent by our proof from before and have a trivial intersection. Let
this basis be {v1

1

, . . . v1` }. We consider v1
1

, T v1
1

, . . . Tn�2v1
1

, etc. By the same process as be-
fore, we yield another block. We can apply this same argument repeatedly on ker(Tn�j),
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e↵ectively inducting on j, until we reach our conclusion: We have a decomposition of V into
blocks of the form 2

66664

0 1 · · · 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0

3

77775

of any size, 1 ⇥ 1 through n ⇥ n. The blocks that come from ker(Tn�1) would be of size
n� 1⇥ n� 1, etc. This is the Jordan Canonical Form for nilpotent matrices.

Theorem (Jordan Normal Form): Given T : V ! V , an F -linear map with F alge-
braically closed, then there exists a block decomposition of T (i.e. a direct sum decomposi-
tion of V into T -invariant subspaces where the matrix represents the action of T on each of
these subspaces) into blocks of the form

2

66664

� 1 · · · 0

0 �
. . . 0

...
...

. . . 1
0 0 · · · �

3

77775
.

We could have many blocks of this form for a given �, each of which could have a di↵erent
size. For example, for a particular � we could have

2

664

� 1 0 0
0 � 0 0
0 0 � 0
0 0 0 �

3

775 ,

which consists of one 2⇥ 2 block and two 1⇥ 1 blocks.

Decomposition into the direct sum of all the blocks with a given � is canonical. (It’s the
generalized eigenspace). However, the further decomposition is not canonical, as we had to
choose {v

1

, . . . v`}

Claim: The number of each size blocks with �’s along the diagonal is determined.
Proof: The largest block is of size n⇥n where n is the smallest number such that ker((T �
�I)n) = ker((T � �I)n+1. The number of largest blocks is equal to dim(ker((T�I)n)) �
dim(ker((T�I)n�1)). Then you can pick out the number of any smaller size block using the
dimensions of ker((T � �I)k). (Rest as Exercise).

Corollary: The conjugacy classes of n⇥ n matrices over an algebraically closed field are in
one-to-one correspondence with Jordan forms.

Corollary: Given T : V ! V , if T k = I over F = C, then T is diagonalizable.
Proof: Consider a Jordan block. We must show that it is size 1 (Delayed).
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Lecture 17
October 16

Orthogonal Groups and Isometries (Toward Symmetries of Figures in R2 or R3)

Definition: An inner product on Rn is a bilinear (i.e. linear in each factor when fixing
the other) map h, i : Rn ⇥Rn ! R defined as hv, wi =Pn

i viwi.

Definition: The orthogonal group O(n) is the set of all n ⇥ n invertible matrices with
real entries that preserve the inner product, i.e. O(n) = {A 2 GLn(R) | hAv,Awi =
hv, wi 8 v, w 2 Rn}.

Claim: The following are equivalent:
1. A is orthogonal, i.e. hAv,Awi = hv, wi 8 v, w 2 Rn.
2. ATA = I.
3. AAT = I.
4. The columns of the matrix of A are othogonal.
5. The rows of the matrix of A are othogonal.
Proof:
2 =) 1: Notice that hv, wi = vTw, so hAv,Awi = (Av)T (Aw) = vTATAw.
1 =) 2: Suppose ATA = B 6= I. Then consider hAei, Aeji = eTi Bej = Bij . Since B 6= I
there exists i, j such that Bij 6= �ij . (This is the Kronecker delta, defined as �ij = 1 for i = j
and �ij = 0 for i 6= j). Then hAei, Aeji = eTi Bej = Bij 6= �ij = eTi ej = hei, eji. This is a
contradiction.
2 =) 4: The entries of ATA are the inner products of the columns, so the statement
ATA = I is the statement that the columns are orthonormal (with the norm defined as
||v|| =phv, vi).
2 () 3: ATA = I implies that A is injective. By Rank-Nullity, A is surjective. Thus A is
invertible, with AT as its inverse. (This proof works in both directions).
3 =) 5: Same argument as 2 =) 4.

Claim: det(A) = ±1 if A is orthogonal.
Proof: 1 = det I = det(ATA) = det(AT ) det(A) = det(A) det(A) = det(A)2. Thus
det(A) = ±1.

Now we consider a subgroup defined as the kernel of det : O(n) ! {±1, ·}. This is the
special orthogonal group SO(n) = {A 2 GLn(R) | ATA = I and det(A) = 1}. We see that
SO(n) is a normal subgroup of O(n), as the determinant is a homomorphism. Note that the
index of SO(n) is 2.

We shall consider the elements of SO(n). Let n > 1 and let

A =

2

4
0 1
1 0

⇤
⇤ In�2

3

5

Then A2 = I, A 2 O(n) det(A) = �1.

Now we let n � 2. We have SO(n)
i
,! O(n)

det⇣ {1,�1} as a short exact sequence
(im(i) = ker(det)). We see that there exits a � : {1,�1} ! O(n) defined with �(�1) = A,
as det �� = id{1,�1}. Thus we have a semidirect product O(n) ⇠= SO(n) o

�
{±1} with
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� : {1,�1} ! Aut(SO(n)) defined as �(�1)(C) = ACA�1. Then AC = ACA�1A.

Understanding SO(2) and SO(3)

SO(2):

If C 2 SO(2), C =


a ⇤
b ⇤

�
. The columns of C are orthonormal, so a2 + b2 = 1. We

see that the choices for the second column that are orthogonal to the first column are mul-

tiples of

�b
a

�
and our choices of norm 1 are

�b
a

�
and


b
�a

�
. The first choice leads to a

matrix of determinant 1, so it is our only choice. Note that the second choice yields a matrix
in O(n) of determinant �1. Then there exists a unique ✓ 2 [0, 2⇡] such that a 2 cos(✓),

b = sin(✓). Thus C =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
, which is a counterclockwise rotation by ✓.

Remark:


cos(✓) sin(✓)
sin(✓) � cos(✓)

�
(which has determinant -1) is a reflection about the line y =

tan(✓/2)x. This form describes all elements of O(n) with determinant �1.

SO(3):

Claim: If A 2 SO(3), then there exists a nonzero v such that Av = v (a fixed vector).
Proof: We need to show that A � I has a nontrivial kernel, i.e., we need to show that
det(A� I) = 0. We know that det(A) = 1, so det(A� I) = det((A� I)T ) = det(AT � I) =
det(A) det(AT � I) = det(ATA � A) = det(I � A) = det(�(A � I)) = (�1)3 det(A � I) =
� det(A� I). Thus det(A� I) = 0.

This shows that given A 2 SO(3), 9 v such that Av = v. Because A preserves the in-
ner product, A preserves the plane hvi? and A is orthogonal on this plane.

Now we change coordinates to ~v, ~w
1

, ~w
2

, an orthogonal triple, i.e. we consider

B =
⇥
~v ~w

1

~w
2

⇤
A
⇥
~v ~w

1

~w
2

⇤�1

.

(This fixes e
1

and preserves the span of e
2

and e
3

). Thus B has the following form.

B =

2

4
1 0 0
1

*1

3

5

with ⇤ 2 O(2). We see that 1 = det(B) = 1 · det(⇤), so det(⇤) = 1 and ⇤ 2 SO(2).
We conclude that any element of SO(3) is a rotation about some axis.

Isometries of Rn

Definition: An isometry of Rn is a map � : Rn ! Rn that preserves distance, i.e. such
that d(�(v),�(w)) = d(v, w) with d(v, w) = ||v�w||. (Note that � is not necessarily linear).

Theorem: Rn
o

mult

O(n) ⇠= Isom(Rn) with mult : O(n) ! Aut(Rn) defined with A 7! mA.

Proof: The isomorphism between these spaces is the map defined with (~v,A) 7! ⌧~v � mA.
We shall delay showing that it is an isomorphism for now.
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Claim: This map is a homomorphism.
Proof: It su�ces to show that ma �⌧~v = ⌧mA(v) �mA. This is clearly true, as (mA �⌧~v)(w) =
mA(w + v) = Aw +Av and (⌧mA(v) �mA)(w) = ⌧mA(v)(Aw) = Aw +Av.
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Lecture 18
October 18

More on the Isometries of Rn:

We stated the following last lecture:
Theorem: Rn

o

mult

O(n) ⇠= Isom(Rn) with mult : O(n) ! Aut(Rn) defined with A 7! mA.

Proof: The isomorphism � between these spaces is the map defined with �(~v,A) = ⌧~v �mA.
We have already shown that this is a homomorphism. It is also injective, which we can see
by examining its kernel. Clearly the only pair composed of a vector and a transformation
that will be sent the identity map is the pair (0, I). Now we must show that � is surjective.
It su�ces to show the following lemma.

Lemma: Any isometry of Rn that fixes the origin is an orthogonal transformation.
Proof: We must show that an isometry of Rn (call it �) both preserves the inner product
and is linear, i.e. h�(p),�(q)i = hp, qi and �(cp) = c�(p) and �(p+ q) = �(p) + �(q).

To prove the first part, we see that d(p, q)2 = hp � q, p � qi = hp, pi + hq, qi � 2hp, qi.
We also note that h�(p),�(p)i = d(�(p), 0)2 = hp, pi. So we can claim (�(p),�(q))2 =
h�(p),�(p)i + h�(q),�(q)i � 2h�(p),�(q)i. Since � is an isometry, d(p, q) = d(�(p),�(q)).
We have already seen that the first terms (and the second terms by the same logic) of each
expression have to be equal. Thus the third terms must also be equal, so h�(p),�(q)i = hp, qi.

To prove the second statement, we consider h�(cp),�(cp)i = hcp, cpi = c2 hp, pi and hc�(p), c�(p)i =
hcp, cpi = c2 hp, pi. Then we take h�(cp)� c�(p),�(cp)� c�(p)i2 = h�(cp),�(cp)i+hc�(p), c�(p)i�
2h�(cp), c�(p)i. We also notice hc�(p),�(cp)i = c h�(p),�(cp)i = c hp, cpi = c2 hp, pi. The
key step occurs in the second equality, where he used the fact that � preserves the inner
product. Thus h�(cp)� c�(p),�(cp)� c�(p)i2 = c2hp, pi + c2hp, pi � 2c2hp, pi = 0 and
�(cp) = c�(p). The proof that � is additive (i.e. it preserves addition) is left as an exercise,
but it follows a similar argument.

Having proved the lemma, we conclude that any isometry of Rn that fixes the origin is
an orthogonal transformation. Thus our map � : Rn

o

mult

O(n) ! Isom(Rn) is surjective, as

any isomorphism that shifts the origin can simply be written as an orthogonal transformation
composed with a translation to the point to which it maps the origin. Thus � is a bijective
homomorphism, i.e. an isomorphism and Rn

o

mult

O(n) ⇠= Isom(Rn).

Now we shall discuss isometries in R2. We have seen that O(2) ⇠= SO(2) o
�
{�1, 1}, where

SO(2) = {⇢✓}, the set of counterclockwise rotations around the origin by ✓, and {�1, 1} =
{r}, the set of reflections about the origin. Thus the group elements can all be written as
1, ⇢✓, or ⇢✓r (✓ 2 [0, 2⇡]).

Now we shall study the finite subgroups of Isom(R2). These will each be the symmetry
group of some object in the plane. For example, we consider an equilateral triangle. The
isometries consist of three rotations (1, ⇢

2⇡/3, ⇢4⇡/3) and 3 reflections r, ⇢
2⇡/3r, ⇢4⇡/3r.

Claim: Given G ⇢ Isom(Rn), if G is finite, then there exists some p 2 Rn such that
g(p) = p 8 g 2 G.
Proof: We know that g = ⌧~v � mA. We can pick any point q 2 Rn and apply all the
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isometries to it. The average of these points will be our fixed point, which we can think of

as a “center of mass.” Thus p =
1

|G|
|G|P
i=1

gi(q) where {gi} is a list of all the elements in G

and q is any point in Rn. Having defined p, we can now show that g(p) = p. We write this

as ⌧~v �mA

 
1

|G|
|G|P
i=1

gi(q)

!
= ⌧~v

 
1

|G|
|G|P
i=1

A(gi(q))

!
=

1

|G|
|G|P
i=1

�
A(gi(q)) + ~v

�
=

1

|G|
|G|P
i=1

g(gi(q)).

This is not quite the same expression we had for p, but it is equivalent, because left multi-
plication by any g 2 G is a bijection. Thus it relabels every term in the sum, but the overall
sum remains the same and p = g(p). We conclude that if we choose p to be the origin, then
G is a finite subgroup of O(2) (because any isometry that fixes the origin is a orthonormal
transformation).

Now we shall consider if G contains a reflection. If G has no reflection, then it is a subgroup
of SO(2) ⇠= R/2⇡Z and is a group of rotations.
Claim: If G is a finite subgroup of O(n) with no reflection, then G = {⇢

2⇡k/n | k 2
0, 1, . . . (n� 1)} ⇠= Cn for some n.
Sketch of Proof: We choose the smallest positive rotation and take multiples of it. If there
is some rotation that is not a multiple of it, then we can compose them in such a way that
yields a smaller rotation, which contradicts our choice of rotation. (Note that this mimics
our proof that all subgroups of Z were of the form dZ).

If there is some reflection r 2 G, we can then write O(2) = SO(2) o
�
{1, r}. Then elements

can be written as ⇢✓ or ⇢✓r. We conclude that G = {⇢
2⇡k/n | k 2 0, 1, . . . (n� 1)}o

�
{1, r} ⇠=

Z/nZo

�
{�1, 1} ⇠= Dn.

We conclude that finite subgroups of O(2) are either cyclic groups of rotations or dihe-
dral groups of rotations composed with a reflection.

Discrete Subgroups

Definition: G ⇢ Isom(Rn) is a discrete subgroup if there is a lower bound on the length of
the vector ~v and the size of the angle ✓ in any element ⌧v⇢✓r 2 G.

Consider a discrete subgroup G ⇢ R2

o

mult

O(2). We then consider G \ T , where T is

the group of translations.
Claim: We have three possibilities for G \ T :
1. G \ T ⇠= 1, which we will see implies that G is finite.
2. G \ T ⇠= Z, where every translation is a multiple of one smallest translation.
3. G \ T ⇠= Z2.
Proof: Delayed.

Definition: A planar crystallographic group is a discrete subgroup G of Isom(R2) with
G \ T ⇠= Z2.
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Lecture 19
October 21

More on Discrete Subgroups of Isom(Rn)

We shall consider the isometries of R2, . We recall that Isom(R2) ⇠= R2

o

�
O(2) under the

isomorphism (v,A) 7! ⌧v � mA. We recall that anything in O(2) is a rotation by some ✓
composed with a reflection about some axis, i.e. it can be written ⇢✓ � r, while anything in
R2 is a translation ⌧~v.

Definition: Given a discrete subgroup G < Isom(R2) let the lattice of G be LG = {v 2 R2 |
⌧v 2 G}. (Note that this is essentially the set of vectors that correspond to the elements of
G \ T ).

Remark: G \ T is normal in G.
To see this, we consider the it general fact that given H < G, and N / G, H \ N / G. Or
we can consider the homomorphism Isom(Rn) ! O(n) defined with ⌧v �mA 7! A. This map
has as kernel of T ⇢ Isom(Rn). The kernel of this map restricted to G is G \ T .

Such a map also yields G, which is the image of G in O(n) under this map, called the
point group of G. We see that G ⇠= G/G \ T . This is the set of A 2 O(2) such that there
exists v such that ⌧v �mA 2 G. This is not equivalent to the set or orthogonal elements in
G. To see the distinction, consider the glide reflection equivalent to a refection over the x
axis followed by a horizontal translation. Under our map, this would yield a reflection in G,
even though G might not necessarily have a reflection itself.

Claim: Any discrete subgroup G of O(n) is finite.
Sketch of Proof : We know that O(n) contains only reflections and rotations. We take the
smallest rotation angle. We see that all rotations are multiples of this and this is 2⇡/n for
some n.

Lemma: If A 2 G ⇢ O(n) and ~v 2 LG, then A~v 2 LG.
Proof : The basic idea comes from the following: ⇢✓⌧v⇢�✓ = ⌧⇢✓v⇢✓⇢�✓ = ⌧⇢✓v.
We then have ⌧wmA 2 G (if A 2 G). Then

⌧wmA⌧v(⌧wmA)
�1 = ⌧wmA⌧vmA�1⌧�w

= ⌧w⌧AvmAmA�1⌧�w

= ⌧w⌧Av⌧�w

= ⌧w+Av�w

= ⌧Av.

Proposition: A discrete additive subgroup L of R2 is one of the following:
1. L = {0}.
2. L = Zv
3. L = Zv +Zw, where v and w are linearly independent. (This case is the lattice).
Proof: Either we have Case 1 or we can choose a minimal nonzero length vector v 2 L.
Then Zv 2 L. Then either we have Case 2 or there are more vectors to consider. We take
a minimal nonzero length vector w in L � Zv. We then have two cases to consider. Either
w 2 Rv or w /2 Rv. The fist case leads to a contradiction, because additive subgroups of
R are all multiples of one element because otherwise, there would be gaps smaller than |v|,
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e.g. |2v � w| < |v|. Thus w 2 L�Zv cannot also be in Rv. In the second case, we consider
the triangle formed by w, v, and v�w. There is no vector in L inside this region, as w is of
minimal length. We see this is true for the triangle formed by w, v, and v + w as well.
Thus we conclude that L = Zv +Zw.

Theorem: G ⇠= Cn or G ⇠= Dn for n = 1, 2, 3, 4, or 6.
Sketch of Proof: Let v be the minimal vector in LG. We know that the subgroups of O(n)
are either {⇢

2⇡k/n} or {⇢
2⇡k/n} [ {⇢

2⇡k/n � r}. Thus ⇢
2⇡/nv 2 LG. We consider the triangle

formed by v, ⇢
2⇡/nv, and ⇢2⇡/nv � v. We see that |⇢

2⇡/nv � v| < |v| for n > 6, as at n = 6

they form an equilateral triangle. Thus for n > 6, ⇢
2⇡/nv /2 LG, so ⇢

2⇡/n /2 G.
We now consider n = 5. We can show that |v + ⇢

4⇡/5v| < |v|. (This is left as an exercise).

Planar Crystallographic Groups:
We recall that these are discrete subgroups of Isom(R2) whose the translations correspond to
a lattice (G\T ⇠= Z2). They have point groups isomorphic to Cn or Dn for n = 1, 2, 3, 4, or 6.

Theorem: There are 17 total possibilities for G up to isomorphic groups, and all 10 possi-
bilities for Cn and Dn are represented.

Theorem: There are two isomorphism classes of planar crystallographic groups in Isom(R2)
with point group D

4

.
a. G = {⌧v � ⇢

2⇡k/4} [ {⌧v � ⇢
2⇡k/4 � r} with v 2 Z�Z

b. G = {⌧v � ⇢
2⇡k/4} [ {⌧v+(1/2,1/2) � ⇢)2⇡k/4v � r} with v 2 Z�Z

Here the reflections are about the x axis.
Proof: LG is isomorphic to, up to orthogonal change of coordinates and rescaling, Z � Z.
(This part is left as an exercise). Given that, there exist rotations by multiples of 2⇡k/4
about some integer lattice point. We take this point to be the origin. Thus such rotations
exist around all lattice points.
Remark: ⌧v⇢✓ is a rotation by ✓ about some point p 2 R2.
We also find ⌧wr 2 G with r 2 G. The reflections in G are reflections about the x and y axes
and the lines of slope 1 and �1.
Now we pick some element ⌧

(a,b)r 2 G. (Let r be reflection about the x axis.) We square it
to yield ⌧

(a,b)r⌧(a,b)r 2 G = ⌧
(a,b)⌧(a,�b) = ⌧

(2a,0).

Proof continued in next lecture.

45



Lecture 20
October 23

More on Discrete Subgroups of Isom(R2)

We were considering the two isomorphism classes of planar crystallographic groups in Isom(R2)
with point group D

4

.

We have ⌧~wrx 2 G for some ~w 2 R2. We write this as ~w = (a, b) and square the
expression, yielding ⌧

(a,b)rx⌧(a,b)rx = ⌧
(a,b)⌧(a,�b)r

2

x = ⌧
(2a,0). So 2a 2 Z. Now we use

ry = ⇢⇡/2rx⇢�⇡/2 = rx⇢⇡ to yield that 2b 2 Z.

We also have ⇢�⇡/2rx 2 G, as ⇢�⇡/2rx = rx⇢⇡/2. We consider ⌧
(a,b)rx⇢⇡/2 2 G. We square

this to yield

⌧
(a,b)rx⇢⇡/2⌧(a,b)rx⇢⇡/2 = ⌧

(a,b)⇢�⇡/2rx⌧(a,b)rx⇢⇡/2

= ⌧
(a,b)⌧(a,�b)⇢⇡/2rxrx⇢⇡/2

= ⌧
(a,b)⌧(�b,a)

= ⌧
(a�b,b+a) 2 G.

Thus a � b 2 Z. So either G = {⌧
(a,b)⇢2⇡k/4 | a, b 2 Z} [ {⌧

(a,b)⇢2⇡k/4 | a, b 2 Z} or
G = {⌧

(a,b)⇢2⇡k/4 | a, b 2 Z} [ {⌧
(a,b)+(1/2,1/2)⇢2⇡k/4r | a, b 2 Z}.

We know draw an interesting conclusion from the second case. We ask the following question:
Is there a homomorphism G ⇠= D

4

! G such that we have a sequence D
4

,! G ⇣ G? (Can
we see G inside G?) The answer is no, because then there would exist a point p 2 R2 that
is fixed by this image of D

4

in G, as any finite subgroup of the isometry group has a fixed
point. We then repeat all of the above using this point as the origin. This yields the first case.

We shall eventually discuss possible point groups in R3, or rather, the finite subgroups
of Isom(R3).

Definition: If G is a group and S is a set, a group action of G on S is a map G ⇥ S !
defined by (g, s) 7! g · s such that (g

1

, g
2

) · s = g
1

· (g
2

· s).

This is the same as a homomorphism G ! Bij(S, S) defined with g 7! {s 7! g · s}.

Definition: Given x 2 S, the stabilizer of x is Stabx = {g 2 G | g · x = x}. This is a
subgroup of G.

Consider D
3

acting on the triangle T . We label the vertices as A, C, and E, the midpoints
of the sides as B, D, and F , the center as O, and an arbitrary point on the boundary as P .
We see that StabA = {id, reflAD}, StabB = {id, reflBE}, StabP = {id}, and Stab

0

= D
3

.

Definition: Given x 2 S, the orbit of x is Ox = {y 2 S | 9 g 2 G such that g · x = y}.

In our previous example, we see that OA = {A,C,E}, OB = {B,D,F}, OA = {0}, and
OP = 6 points.

Now we consider if Stabx must be normal. It does not. For example, ⇢
2⇡/3rOA⇢�2⇡/3 = rOC
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does not stabilize A.

Now we consider y 2 Ox. We find that if h 2 Staby and y = g ·x, then hy = y () h(gx) =
gx () (g�1hg)x = x. We conclude that g�1(Staby)g = Stabx, i.e. Staby = g(Stabx)g�1.

Now we consider the set of elements of G that take x to y where y 2 Ox. We see
hx = y = gx () g�1hx = x () g�1h 2 Stabx () h 2 gStabx. Thus the set
of elements in G that take x to y is a coset. In fact, we have a one-to-one correspondence
between the elements of Ox and the left cosets of Stabx.
We conclude that if we restrict the action of G on S to G on Ox, x 2 S, then the following
diagram commutes:

G⇥Ox Ox

G⇥ {left cosets of Stabx} {left cosets of Stabx}
1 to 1 1 to 1

.

Orbit-Stabilizer Theorem:
1. |Ox| = [G : Stabx].
2. |G| = |Ox| · |Staby|.

If we consider our previous example of the triangle, we see that |StabA| = 2, |OA| = 3,
and |D

3

| = 2 · 3 = 6. Similarly, we saw that |StabO| = 6, |OO| = 1, |StabP | = 1, and
|OP | = 6.
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Lecture 21
October 25

Finite Subgroups of SO(3)

Suppose G < SO(3) is finite. We consider the set S = {p 2 S2 (the sphere) | 9 g 2 G, g 6=
id such that g(p) = p}. This is the set of a poles of rotations in G, i.e. the unit eigenvectors
of the elements of G. Note that they define the axes of rotations for the elements of G.

Claim: G acts on S with multiplication (of a matrix and a vector).
Proof: We need a map G ⇥ S ! S that is associative. This follows from the associativity
of matrix multiplication. We then need to show that if h 2 G, and p 2 S, then hp 2 S, i.e.
9 g 2 G such that gp = p. We need g0 such that g0(hp) = hp. We choose g0 = hgh�1, so
g0hp = hgh�1hp = hgp = hp.

The orbits of the action of G on S partition S. We shall list them as O
1

,O
2

, . . . ,Ok and
their sizes as n

1

, n
2

, . . . , nk. Then, given p and q = gp in Oi. Then Stabp ⇠= Stabq. (We recall
that gStabpg�1 < G is Stabq). So they are the same size. We call this size ri. Then the
stabilizer for an element of orbit 0i has size ri. Note that niri = |G| by the Orbit-Stabilizer
Theorem.

Example:
We consider the symmetries of the cube. One type of axis of rotation would pass through
two opposite vertices (of di↵erent faces). Another type would pass through the midpoints
of two adjacent faces. A third type would pass through the midpoints of two adjacent edges
of di↵erent faces. All axes would be one of these types. Using these axes, we consider the
orbits of the poles of the symmetries of the cube.
O

1

is the vertices. It has size n
1

= 8. The stabilizer of each vertex has size is r
1

= 3.
O

2

is the midpoints of the faces. It has size n
2

= 6. The stabilizer of each point has size
r
2

= 4.
O

3

is the midpoints of the edges. It has size n
3

= 12. The stabilizer of each point has size
r
3

= 2.
Note that each of these orbits and stabilizers shows that |G| = 24. We know that group of
symmetries of the cube is isomorphic to S

4

, which has order 4! = 24, so this confirms that.

Now let’s count the elements of the set {(g, p) | g 2 G, g 6= id, p 2 S and g(p) = p}. This is
2(|G|�1). We can find this two ways. We can sum over poles to get 2(|G|�1) =

P
p2S

rp�1. We

can also sum over orbits to get
kP

i=1

ni(ri�1) =
kP

i=1

|G|�ni. Thus we have 2(|G|�1) =
kP

i=1

|G|�ni.

Dividing by |G|, we find 2� 2

|G| =
kP

i=1

✓
1� 1

ri

◆

Claim: k is 2 or 3.
Proof: We know that ri is at least 2, because if p 2 S, then id(p) = p, and g(p) = p for

some nonidentity g 2 G. (We assume that |G| 6= 1). Thus 2� 2

|G| =
kP

i=1

✓
1� 1

ri

◆
� k

2
. So

k < 4. Also, 1  2� 2

|G| =
Pk

i=1

✓
1� 1

ri

◆
< k. So 1 < k < 4, so k = 2 or 3.

We now consider the two cases.
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Case of k = 2

We find that 2 � 2

|G| = 1 � 1

r
1

+ 1 � 1

r
2

=) 1

r
1

+
1

r
2

=
2

|G| . Thus n
1

+ n
2

= 2, so

n
1

= n
2

= 1, and r
1

+ r
2

= |G|. This is just Cn (n = |G|), the cyclic group of rotations about
one axis. Thus we have only two points, each with a stabilizer of size 2. We shall label this
as (r

1

, r
2

) = (n, n).

Case: k = 3

We write r
1

= r
2

= r
3

. Then we find that 2 � 2

|G| = 1 � 1

r
1

+ 1 � 1

r
2

+ 1 � 1

r
3

=) 2

|G| =
1

r
1

+
1

r
2

+
1

r
3

� 1. One of the ri must be 2, or else
2

|G|  0. Let r
1

= 2. Then r
2

= 2 or 3.

We then examine these two cases.

Case: (2, 2, r
3

).

We find that r
3

=
|G|
2

, which we’ll label as m. Then the sizes of the corresponding orbits

are (2, 2,m).

The case corresponds to the two antipodal points on the sphere with m rotations around
each of them. These points are in the same orbit, so we can swap them. The 2m points of
the other orbits correspond to the vertices and the midpoints of the sides of a m-gon on the
equator of the sphere. Thus we have Dm, the set of symmetries of the m-gon.

Case: (2, 3, r
3

).
We see that r

3

= 3, 4, or 5. We consider each of these cases:

Subcase: (2,3,3).
This implies that |G| = 12 and the sizes of the orbits are (6, 4, 4). This case corresponds
the the symmetries of a regular tetrahedron. There are 4 vertices with stabilizers of size
3, 6 midponts of edges with stabilizers of size 2, and four midpoints of faces with stabiliz-
ers of size 3. This group is called the tetrahedral group T . We claim this is isomorphic
to the alternating group A

4

(the kernel of the sign homomorphism from S
4

to {±1}). We
can see this by considering the four vertices as a set of size 4. T acts on the vertices and
give a homomorphism T ! Bij({1, 2, 3, 4}, {1, 2, 3, 4}) = S

4

. A rotation about the a ver-
tex maps to a 3-cycle. A rotation about a pair of opposite edges maps to the composition
of 2 2-cycles. We see that this map is injective, and |A

4

| = 12, so this map is an isomorphism.

Subcase (2,3,4):
We see that |G| = 24 and the sizes of the orbits are (12, 8, 6).
This case corresponds to the symmetries of the cube. There are 8 vertices with stabilizers
of size 3, 12 midpoints of edges with stabilizers of size 2, and 6 midpoints of faces with
stabilizers of size 4. This group is called the octahedral group O, as an octahedron can be
made by swapping the faces and vertices of the cube.

Claim: O ⇠= S
4

.
Proof: Delayed.

Subcase (2,3,5):
We see that |G| = 60 and the sizes of the orbits are (30, 20, 12).
This case corresponds to the symmetries of the icosahedron, or the icosahedral group I.
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There are 12 vertices with stabilizers of size 5, 30 midpoints of edges with stabilizers of size
2, and 20 midpoints of faces with stabilizers of size 3.

Claim: I ⇠= A
5

.
Proof: Delayed.
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Lecture 22
October 28

Sketches of O ⇠= S
4

and I ⇠= A
5

Recall that O is the octahedral group, the orientation-preserving isometries of the octa-
hedron or the cube and that I is the icosahedral group, the orientation-preserving isometries
of the icosahedron or the dodecahedron.

The cube has four main diagonals. O permutes these diagonals by rotation around an
axis, which yields a homomorphism from O to S

4

. Now we must check that no nonidentity
element of O preserves all four diagonals. Since O consists of rotations about either an axis
through the midpoint of two faces, one through the midpoints of two edges, or one of the
main diagonals, this is true.

We can relate the symmetries of the tetrahedron to this group by inscribing a tetrahe-
dron in a cube. In doing so, the tetrahedron uses half of the vertices of the cube, including
one out of each end of a main diagonal. This shows that T ⇢ O, and it will turn out that
T ⇠= A

4

⇢ S
4

⇠= O, i.e. T is isomorphic to the group of odd permutations. We also see that
the number of edges of the tetrahedron equals the number of faces of the cube.

In a dodecahedron, we have twelve pentagonal faces. This is equivalent to having twelve
edges of a cube. We then choose two parallel face diagonals of adjacent pentagonal faces,
which allows us to inscribe a cube. Since there are five face diagonals of a pentagon, this
yields five regular cubes inscribed in the dodecahedron.

Claim: The action of I on these 5 cubes give an injective homomorphism I ,! S
5

, with
image landing in A

5

, so I ⇠= A
5

because |I| = 60 and |A
5

| = 5!/2 = 60.
Proof:
We see that rotating the dodecahedron around a face yields a 5-cycle, rotating around a
vertex yields a 3-cycle, and rotating around an edge yields the product of two 2-cycles. All
of these are even and none are the identity, so we find that I ⇠= A

5

.

More Group Theory:

Cayley’s Theorem: Every finite group is isomorphic to a subgroup of Sn, where n = |G|.
Proof: We use left multiplication: G⇥G ! G defined with `g(h) = gh. This is an action:
`g1g2(h) = (g

1

g
2

)h = g
1

(g
2

h) = `g1(`g2(h)). We now consider the orbit of an element. It
must be all of G, because for any h0 2 G, we can use h0h�1 2 G to take an arbitrary h 2 G to
h0. This yields a map G ! Bij(G,G) ⇠= Sn where n |G| defined with g 7! `g. Only 1 maps to
the identity under this map. Since the kernel is trivial, we have an injective homomorphism
G ,! Sn/, i.e. G ⇠= im(�) ⇠= Sn.

Theorem: If H < G is a finite group of index p, where p is the smallest prime divid-
ing |G|, then H /G.

Proof: Consider the action of G on the cosets of H. This yields a map � : G ! Sp.
Thus we find g 2 ker(�) () g · (giH) = giH 8 i =) g · (1H) = H () g 2 H. Thus
N = ker� < H. We then find the short exact sequence N ,! G ⇣ im(�) < Sp. We know
im� ⇠= G/N and [G : N ] = |G/N |. We find that [G : N ] | |Sp|, so [G : N ] | p!. We claim that
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[G : N ] = p. We know that [G : N ] | |G| , and |G| has no prime factors less that p, so the
index is either 1 or p. But [G : N ] � [G : H], so [G : N ] = p. So N = H, as they have the
same index and N < H. So H is normal.

Conjugacy Classes and the Class Equation:

We let G act on itself by conjugation. This is an action, as g
1

· (g
2

· h) = g
1

(g
2

hg�1

2

) =
g
1

g
2

hg�1

2

g�1

1

= (g
1

g
2

)h(g
1

g
2

)�1 = (g
1

g
2

) · h.

We consider the orbit and stabilizer of an element h 2 G.
The orbit of h is C(h) = {ghg�1 2 G | g 2 G}, known as the conjugacy class of h.
The stabilizer of h is Z(h) = {g 2 G | ghg�1 = h}, known as the centralizer of h.

We see that |G| = |C(h)| · |Z(h)| from the Orbit-Stabilizer Theorem.

We also have a the Class Equation: |G| = P
conjugacy classes

|C|. (G is finite).

Proof: The orbits of an action partition G, so |G| is the sum of sized of the orbits.

This is often written as |G| = |C
1

| + |C
2

| + · · · + |Ck|, where k is the number of conju-
gacy classes and C

1

, C
2

, . . . , Ck are the conjugacy classes written in increasing order of size.

Example:
We consider D

3

= {1, ⇢, ⇢2, r, r⇢, r⇢2}. To multiply these, we use r⇢ = ⇢�1r = ⇢2r. We find
the following:
r⇢r�1 = ⇢�1rr�1 = ⇢2.
⇢r⇢�1 = r⇢�1⇢�1 = r⇢.
⇢r⇢⇢�1 = r⇢2.
Thus {1}, {⇢, ⇢2}, and {r, r⇢, r⇢2} are the conjugacy classes. This agrees with the Class
Equation, as 6 = 1 + 2 + 3.
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Lecture 23
October 30

More on Conjugacy Classes and the Class Equation

Last lecture we considered the action of G on itself by conjugation. We now consider
D

4

= {1, ⇢, ⇢2, ⇢3, r, r⇢, ⇢2, r⇢3}.
We find the following:
r⇢r = rr⇢3 = ⇢3

r⇢2r = r⇢r⇢3 = rr⇢3⇢3 = ⇢2

⇢⇢2⇢�1 = ⇢2

⇢r⇢�1 = r⇢3⇢3 = r⇢2

⇢(r⇢2)⇢�1 = r⇢3⇢2⇢3 = r.
Thus {1}, {⇢, ⇢3}, {⇢2}, {r, r⇢2}, and {r⇢, r⇢3} are the conjugacy classes.
Thus the class equation is 1 + 1 + 2 + 2 + 2 = 8.

Lemma: If |C(x)| = 1, then xg = gx for all g 2 G.
Proof: gxg�1 = x =) gx = xg

Theorem: The Class Equation for D
2m (with 4m elements) is

4m = 1|{z}
identity

+ 1|{z}
rotation by ⇡

+ 2 + · · ·+ 2| {z }
m�1 rotations by ⇡k/m

+ m|{z}
reflections about midpoints of edges

+ m|{z}
reflections about vertices

.

The class equation for D
2m+1

is
4m+ 2 = 1|{z}

identity

+ 2 + · · ·+ 2| {z }
m rotations by ±2⇡k/2m+1

+ 2m+ 1| {z }
reflections

. (Here all the reflections are in the con-

jugacy class because every reflection about a midpoint of a side of an n-gon with n odd is
also a reflection about a vertex).
Proof: D

2m = {1, ⇢, ⇢2, · · · , ⇢2m�1, r, r⇢, · · · , r⇢2m�1}. This yields r⇢kr = rr⇢�k = ⇢�k and
⇢(r⇢k)⇢�1 = r⇢�1⇢k⇢�1 = r⇢k�2.

Groups of Order p2 (p prime)

Claim: There exists a nonidentity element in the center of G
Proof: The class equation is p2 = 1 + |C

2

| + · · · + |Ck|. We claim that at least one of
|C

2

|, . . . , |Ck| is one. Clearly some |Cj | is 1, p, or p2 by Lagrange’s Theorem. But |Cj |  p2�1
since the conjugacy classes partition G, so |Cj | 6= p2. Also, |Cj | cannot be equal to p for
every j because the right hand side would equal 1 mod p. Thus there is at least one |Cj | = 1,
so the element in that conjugacy classes is in the center of G.
Further Claim: G is abelian.
Proof: Let x 2 Z(G), x 6= 1. The order of x is either p or p2. If |x| = p2, then G is cyclic, so
it is abelian. Otherwise, |Z(G)| is either p or p2. We assume that it is p. We assume for the
sake of contradiction that there exists some y /2 Z(G). We then consider the order of Z(y).
We know that Z(G) ⇢ Z(y) and y 2 Z(y). So |Z(y)| > p. We also know that Z(G) < G and
|G| = p2, so |Z(y)| | p2. Thus Z(y) = Z(G), so y 2 Z(G), which contradicts our choice of y.
Thus |Z(G)| = p2, so G is abelian.

Cauchy’s Theorem: Given a finite group G with p | |G|, 9 x 2 G of order p.
Proof: First we shall prove that this is true if G is abelian. We shall induct on |G|. We take
any element y 2 G. If p | |y|, we are done, as we can choose some multiple of y with order
p. (If yp` = 1, then |y`| = p). If p - |y|, we consider G/hyi, which is of smaller order than G.
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By our inductive step, this group must have an element of order p. We then see that if some
quotient of G has an element x 2 G/H of order p, then we can choose x such that ⇡(x) = x
with ⇡ : G ! G/H. Then p | |x|, so we’re done by the same logic as before.

If G is not abelian, we again induct on |G|. The Class Equation is |G| = 1+ |C
2

|+ · · ·+ |Ck|.
Case 1: Z(G) 6= {1}. Then either |Z(G)| is a multiple of p or |G/Z(G)| is multiple of p and
G has an element of order p by our previous method.
Case 2: Z(G) = {1}. Not all of the |Cj | can be divisible by p because then |G| ⌘ 1 mod p.
Thus there is some Cj such that 1 < |Cj | and p - |Cj |. Let x 2 Cj . Then we consider Z(x),
which has size |G|/|Cj |, which is divisible by p and smaller, so we know that Z(x) has an
element of order p and so does G by our previous logic. (Note that the base case where
|G| = p implies that all nonidentity elements have order p).

Class Equation for the Icosahedral Group:

We know that |I| = 60. An icosahedron has 20 triangular faces, 30 edges, and 12 ver-
tices where 5 edges meet. The elements of I are:
-the identity
-12 rotations about a vertex by 2⇡/5 (this includes rotations about the antipodal vertex by
�2⇡/5)
-12 rotations about a vertex by 4⇡/5 (this includes rotations about the antipodal vertex by
�4⇡/5)
-20 rotations about centers of faces by 2⇡/3 (this includes rotations about the center of the
antipodal face by �2⇡/3)
-15 rotations about edges by ⇡ (this includes rotations about the antipodal edge by ⇡)
We see that 60 = 1 + 12 + 12 + 15 + 20.

Claim: This is the class equation.
Lemma: If A,B 2 SO(3) are conjugate, with A being a rotation about an axis v by angle
✓ and B being a rotation about an axis w by angle �, then ✓ = ±�

Proof: In two dimensions, we have


cos ✓ � sin ✓
sin ✓ cos ✓

�
We consider det


�� cos ✓ � sin ✓
sin ✓ �� cos ✓

�
=

�2 � (2 cos ✓)� + 1. To solve this, we consider ei✓ = cos ✓ + i sin ✓. We find that
�
ei✓
�
2 �

2 cos ✓ei✓ +1 = cos2 ✓� sin2 ✓� 2 cos ✓+1 = 0. Thus we see that the roots are cos ✓± i sin ✓,
which are preserved by conjugation. Thus ✓ is determined up to a sign. Now we must show
that the elements of the sets listed are conjugate. Without loss of generality, we restrict our
consideration to the midpoints of the faces. We see that for any two faces, there exists some
g 2 I that takes face 1 to face 2. We let ~vi be the midpoint of face i. We conjugate by this
g to find that g⇢~v1g

�1 fixes ~v
2

. This is not the identity, so it must be some rotation about
~v
2

. The same can be said for g⇢�1

~v1
g�1, so these must be the two rotations.
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Lecture 24
November 1

We consider the class equation for I in terms of the symmetries of the dodecahedron, which
is formed by 12 pentagons that meet in groups of 3. We find:
60 = 1|{z}

identity

+ 12|{z}
rotations about

the midpoint of a face
by ±2⇡/5

+ 12|{z}
rotations about

the midpoint of a face
by ±4⇡/5

+ 15|{z}
rotations about

pairs of opposite edges
by ⇡

+ 20.|{z}
rotations about
opposite vertices

by ±2⇡/3

We saw before that these are the conjugacy classes of I.

Definition: A group G is simple if its only normal subgroups are {1} and G itself. (This
means that G can’t be broken up into smaller subgroups by quotienting by a normal sub-
group. Simple groups are the primes of group theory.)

As an example, we see that Cp is simple. In fact, there are no other simple groups of
order less than 60, which we shall see soon.

Theorem: I is simple.
Proof: We note that a normal subgroup is a union of conjugacy classes, as H / G ()
ghg�1 2 H 8 h 2 H, g 2 G. We also see that |H| | |G|. Now we must show that there is no
sum of some of 1, 12, 12, 15, and 20 that includes 1 and divides 60 (other than 1 and 60).
This is quickly seen.

Theorem: An is simple for n � 5.
Proof: Exercise.

Classification of finite simple groups

There are 18 infinite families, i.e. classes of groups defined with a single parameter. There are
26 sporadic groups that are not in an infinite family. Two examples of infinite families are the
alternating groups An for n � 5, and the projective special linear groups in dimension n on
the field Z/pZ, PSLn(Z/pZ) (with n large enough). The latter is equal to SLn(Z/pZ)/{nI},
the special linear group modulo the multiples of the identity. An example of a sporadic group
is the monster group M , which has a size of 808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710,
757, 005, 754, 368, 000, 000, 000 ⇡ 8⇥ 1065. It is the largest sporadic group.

Definition: Given H < G, the normalizer of H is NH = {g 2 G | gHg�1 = H}. This
is the largest subgroup of G in which H is normal.

This produces an action � of G on S = {H < G} with �(g)(H) = gHg�1. We see that
StabH = NH and OH = {conjugate subgroups}.

Counting Formula: |NH | ·#(conjugate subgroups of H) = |G|.

Example: Let H < G be the set of rotations about the midpoints of opposite faces of the
dodecahedron. This subgroup has order 5. We see that the number of conjugate subgroups
is 6, as there are six pairs of opposite faces and conjugation yields a rotation about another
face. Then we see that |NH | = 60/6 = 10. Since H < NH , we consider the 5 remaining
elements of NH . These are the ways to take the a face its opposite.
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Sylow Subgroups

First Sylow Theorem: If G is a finite group and pk | G (with p prime and k 2 Z�1

), but
pk+1

- G, then there exists a subgroup of G of order pk. This is known as a Sylow p-subgroup.
Proof: Delayed.

Corollary: If p | |G|, then 9 x 2 G of order p.
Proof: We take a nonidentity element y 2 H, with H being a Sylow p-subgroup (|H| = pk).

We know that |y| | pk, so |y| = p` for 1 � ` � k. Then we simply take yp
`
=
⇣
yp

`�1
⌘p

= 1,

and no smaller power than p` satisfies this, so we choose x = yp
`�1

, which is of order p.

Lemma: If pk | n but pk+1

- n, then p -

� n
pk
�
.

Proof:
� n
pk
�
=

n(n� 1)(n� 2) · · · (n� pk + 1)

pk(pk � 1)(pk � 2) · · · 1 . We claim that n � ` and pk � ` have the

same number of factors of p. This implies that the numerator and denominator have the
same number of factors.
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Sylow Theorems:

First Sylow Theorem: Given a finite group G such that pk | |G| but pk+1

- |G| (p
prime), then there exists a Sylow p-subgroup H < G of order pk.
Proof: Let n = |G|.
Lemma: p -

� n
pk
�
.

Let S = {A ⇢ G | |A| = pk} (subsets, not subgroups). G acts on S by left multiplication.
We list the orbits O

1

,O
2

, . . . ,Oa. We see that |S| = |O
1

|+ · · · |Oa| =
� n
pk
�
, so p - |S|, so there

exists some Oj with |Oj | not divisible by p. Let A 2 Oj . Then |StabA| · |OA| = |G| = mpk

with p - m. So |StabA| = bpk, with b | m.
Lemma: |StabA| divides |A|.
Proof: StabA acts on A by left multiplication. Under this action, the stabilizer of an element

is just the identity and the size of every orbit is |StabA|. We know that |A| =
cP

i=1

|Õi|, so
|StabA| ·#(orbits) = |A|.
Now, since |StabA| = bpk and |StabA| | pk = |A|, b = 1 and H = StabA

Second Sylow Theorem: All Sylow p-subgroups in G are conjugate, i.e. given one H, the
rest are of the form gHg�1.
We will actually show something even stronger: Given a p-group in G, call is K, and given
a Sylow p-group H, K ⇢ gHg�1 for some g 2 G.
Proof: Consider the action of G on the left cosets of H by left multiplication. Let
S = {left cosets of H}. Then |G| = pkm (p - m) and |S| = m. Then K < G of order
p`. K acts on the cosets of H by left multiplication. We claim that there exists a fixed point
of this action, i.e. an element of S, call it gH, such that 8 k 2 K, kgH = gH.
Proposition: Suppose K is a p-group (i.e. a group of order p` for some `) and S is some
set such that p - |S|. Then there exists s 2 S fixed by all k 2 K.
Proof: Delayed.
Now we consider StabgH ⇢ G for action of left multiplication by G on the cosets of H.
We claim that StabgH = StabgHg�1. This is true, as gHg�1 stabilizes gH, i.e. ghg�1gH =
ghH = gH. We also know that |gHg�1| = |H| and |OgH | = |G|/|H|. Also, |StabgH |·|OgH | =
|G|, so |gHg�1| = |StabgH |, and thus gHg�1 = StabgH . Hence K < StabgH = gHg�1.
Proof Resumed: The size of an orbit is pd for some 0 � d  `. We know that |Oi||Stabi| =
|K| = p`. Not all or the orbits can be of an order divisible by p, so some orbit is of order 1.
This is our fixed point.

Third Sylow Theorem: Given G with |G| = mpk, p - m, then the number of Sylow
p-subgroups divides m and is 1 mod p.
Proof: Consider the action of G on the set of Sylow p-subgroups by conjugation. There is
only one orbit by the Second Sylow Theorem, because they are all conjugate. We choose H
to be one of our Sylow p-subgroups. We know that StabH = {g 2 G | gHg�1 = H} = NH ,
which is the normalizer of H. We have H < NH , so |H| | |NH | and |NH | = bpk for some
b | m. Then |OH | = |G|/|NH | = mpk/bpk = m/b and m/b | m. Now we consider the action
of the p-group H on the set of Sylow p-subgroups by conjugation. We see that every orbit is
of an order of a power of p. We see that H is of order 1. Suppose K is a Sylow p-subgroup.
We claim that if K is fixed by H under conjugation, then K = H, i.e. 8 k 2 K,h 2 H,
hkh�1 2 K. We have that H < NK and |NK | = fpk. We then have that K /NK , as group
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is normal in its own normalizer. Also, K is a Sylow p-subgroup of NK and so is H. Then
we see that they are conjugate by the Second Sylow Theorem applied to NK . The conjugate
of K by any element of NK gives K itself, so H = K. So all other orbits are of an order
divisible by p. Then the #(Sylow p-subgroups ) =

P
sizes of orbits = 1 + jp ⌘ 1 mod p.

Example: Groups of Order 15
There must be a Sylow 3-subgroup and a Sylow 5-subgroup. These must be isomorphic to
C
3

and C
5

. The number of Sylow 3-subgroups divides 15/3 = 5, and it is equal to 1 mod 3.
Thus it is 1 and this subgroup is normal. The number of Sylow 5-subgroups divides 15/5 = 3
and is equal to 1 mod 5. Thus is it also 1 and this subgroup is also normal.
C
3

, C
5

are both normal. C
3

\ C
5

= {1} because any element in the intersection has order
dividing 3 and 5, so it has order 1. This implies that G = C

3

⇥ C
5

.

Example: Groups of Order 21
We have C

3

and C
7

as Sylow subgroups. The number of Sylow 7-subgroups divides 21/7 = 3
and is equal to 1 modulo 7, so it is 1. The number of Sylow 3-subgroups divides 21/3 = 7
and is equal to 1 modulo 3, so it is 1 or 7.
Thus we have G = C

7

o

�
C
3

mediated by some � : C
3

! Aut(C
7

) ⇠= (Z/7Z)⇤. Let x be the

generator of C
3

. If �(x) = 1, then G = C
3

⇥ C
7

. Otherwise, �(x) is something of order 3 in
(Z/7Z)⇤, which is either 2 or 4. We shall finish this next time.
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Sylow Subgroup Example: Groups of Order 21
We have already seen that C

3

and C
7

are Sylow subgroups. C
7

is normal, and we see that
C
7

·C
3

= G because C
7

\C
3

= {1} and |C
7

| · |C
3

| = |G|. This can be seen in that all elements
are distinct, because if h

1

k
1

= h
2

k
2

, then h
2

h�1

1

= k
2

k�1

1

= 1 because it is in the intersec-
tion. Thus we have a semidirect product G = C

7

o

�
C
3

with � : C
3

! Aut(C
7

) ⇠= (Z/7Z)⇤.

The elements of Z/7Z are m
1

,m
2

,m
3

,m
4

,m
5

, and m
6

taken modulo 7. The orders of these
elements are 1, 3, 6, 3, 6, and 2, respectively. Since � is mapping from C

3

, we need the gen-
erator of C

3

to map to the identity (in which case we find G = C
7

⇥ C
3

) or to something of
order 3, i.e. m

2

or m
4

. We see that the subgroup (m
1

,m
2

,m
4

) is isomorphic to C
3

, so up to
relabeling the generator of C

3

(since there are technically two generators), there is only one
nontrivial choice for �.

We conclude that there are two isomorphism classes of a group of order 21. The first is
C
7

⇥C
3

and the second is C
7

o

�
C
3

with � mapping the generator of C
3

to m
2

. In particular,

if if we let x and y be the generators of C
7

and C
3

, respectively, we can write an element of
the group as xiyj such that yx = x2y. Then we see that y3x = y2x2y = yx4y2 = x8y3 = x.
This works because a map that takes the generator of C

3

to m
2

gives a homomorphism.

Example: Groups of Order 12
We see that there is a Sylow 2-subgroup of order 4 and a Sylow 3-subgroup of order 3. The
Sylow Theorems also tells us that the number of Sylow 2-subgroups is equivalent to 1 modulo
2 and it divides 3, i.e. it is 1 or 3, and that the number of Sylow 3-subgroups is equivalent
to 1 modulo 3 and it divides 4, i.e. it is 1 or 4.
We investigate whether we can have 4 Sylow 3-subgroups and 3 Sylow 2-subgroups in a group
of order 12. The Sylow 3-subgroups are all isomorphic to C

3

, so their intersection is trivial.
If we have four Sylow 3-subgroups, then we have 1+ 4 · 2 = 9 distinct elements, i.e. we have
the identity and 8 elements of order 4. Then the Sylow 2-subgroup is just the remaining 3
elements and the identity, so there is only 1 Sylow 2-subgroup.

Let H be a Sylow 2-subgroup and K be a Sylow 3-subgroup in our group G or order 12.
We see that H is isomorphic either to C

4

or C
2

⇥ C
2

and that K is isomorphic to C
3

.The
possibilities are as follows:
1. H /G and H ⇠= C

4

.
2. H /G and H ⇠= C

2

⇥ C
2

.
3. K /G and H ⇠= C

4

.
4. K /G and H ⇠= C

2

⇥ C
2

.

We consider each of these in turn.

1. We have G = C
4

o

�
C
3

, with � : C
3

! Aut(C
4

) = {m
1

,m
3

}. We find that only the

trivial map is allowed, so we find G = C
4

⇥ C
3

.

2. We have G = (C
2

⇥ C
2

) o
�
C
3

with � : C
3

! Aut(C
2

⇥ C
2

) ⇠= S
3

. We can take the

trivial map (in which case we find G = C
2

⇥ C
2

⇥ C
3

), or we can map the generator to a
3-cycle (since they are of order 3), which yields the map C

3

! {1, (1 2 3), (1 3 2)}. It turns
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out this group is A
4

, the set of even permutations of 4 elements. We then see that C
2

⇥C
2

,
as a subgroup of S

4

, is the set of compositions of transpositions of distinct elements, i.e.
{1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

3. We have G = C
3

o

�
C
4

with � : C
4

! Aut(C
3

) = {m
1

,m
2

}. We can take the trivial

map (in which case we find G = C
3

⇥C
4

), or we can map the generator to m
2

, which yields
a semidirect product.

4. We have G = C
3

o

�
(C

2

⇥ C
2

) with � : (C
2

⇥ C
2

) ! Aut(C
3

) ⇠= C
2

. We then have

two choices up to relabeling the elements of C
2

⇥C
2

. We can take the trivial map (in which
case we find G = C

2

⇥C
2

⇥C
3

), or we can project every element of C
2

⇥C
2

to its second factor
in C

2

, which yields a semidirect product G = (C
2

⇥C
2

)o
�
C
3

= C
2

⇥({±1} o

mult

C
3

) = C
2

⇥D
3

.

We conclude that there are 5 isomorphism classes of groups of order 12. They are:
C
4

⇥ C
2

⇠= C
12

C
2

⇥ C
2

⇥ C
3

= C
2

⇥ C
6

A
4

C
2

⇥D
3

C
3

o

�
C
4

such that yx = x2y (with x3 = 1 and y4 = 1).

Groups of Order 60 or Smaller

We now consider groups of order pk. These are never simple, as they always have a proper
normal subgroup. We also know that p-groups always have nontrivial center (which is nor-
mal). We can see this by writing the Class Equation:

|G| = |Z(G)|+P
i
pki .

We know that the order of every conjugacy class is some power of pki , with 0 < ki < n. But
since |G| = pk, p | |Z(G)|, so the center is nontrivial.

We now consider groups of order pq with p < q. We see that the number of Sylow q-
subgroups is equivalent to 1 modulo q and divides p, so it is 1.

We now consider groups of order pkq`. It turns out that none of these groups are simple,
but we need representation theory to prove it. We will have to deal with them case-by-case.
We have p = 2, 3, 5, 7, 11, 13. The cases are 22 · 13, 22 · 11, 23 · 7, 22 · 7, 2 · 52, 32 · 5, 23 · 5,
22 · 5, 2 · 33, 22 · 32, 2 · 32, 24 · 3, 23 · 3, and 22 · 3.

We consider groups of order 22 · 13. We see that the number of Sylow 13-subgroups is
equivalent to 1 modulo 13 and divides 22, so it is 1. This eliminates 22 · 13.
We find that the same argument works for groups of orders 22 · 11, 22 · 7, and 22 · 5.

We then consider groups of order 23 · 5. We see that the number of Sylow 5-subgroups
is equivalent to 1 modulo 5 and divides 23, so it is 1. This eliminates 23 · 5.

Similar arguments can eliminate groups of order 2 · 52, 32 · 5, 2 · 33, 2 · 32. This is left as an
exercise. Having already dealt with groups of order 12, the remaining cases are 23 · 7 = 56,
22 · 32 = 36, 24 · 3 = 48, 23 · 3 = 24, and 22 · 3 = 12.
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We continue our discussion of groups of order less than 60. We have seen that groups
of order pk and pq always have proper normal subgroups, and are never simple (except if
k = 1 or q = 1, as the group of order p is cyclic and simple). In groups of order pkq` (with k
and ` not both 1), we were able to rule out everything except groups of order 12, 24, 36, 48,
and 56 by direct application of the Third Sylow Theorem. We ruled out 12 by a counting
argument.

Before considering these groups, we shall look at other combinations of primes that are
less than 60. For groups of order pqr, the cases are 2 · 3 · 5 = 30and 2 · 3 · 7 = 42, and for
groups of p2qr the only case is 22 · 3 · 5 = 60.

We can rule out 56 by considering the number of Sylow 7-subgroups, which must be equiv-
alent to 1 modulo 7 and divide 8. Thus it is either 1 or 8. If it is not normal, it must be 8.
Then we have 1 + 8 · 6 = 49 elements accounted for. We have 56� 49 = 7 elements left, and
since 1 + 7 = 8, these must form our Sylow 2-subgroup.

We now consider groups of order 24. The number of Sylow 2-subgroups must be equivalent
to 1 modulo 2 and divide 3, so it is 3 if it is not normal. The number of Sylow 3-subgroups
must be equivalent to 1 modulo 3 and divide 8, so it is 4 if it is not normal. We then consider
the action by conjugation of G on the set of Sylow 2-subgroups. If H is a Sylow p-subgroups,
then gHg�1 is a Sylow p-subgroup as well. The Second Sylow Theorem tells us that all the
Sylow p-subgroups have this form. We now have a homomorphism � G ! S

3

, which tells
us how the action permutes the 3 Sylow 2-subgroups. If G is simple, then the kernel of �,
which is normal, must be trivial or G itself. It can’t be G, because some conjugation on H
takes it to a di↵erent Sylow p-subgroup. We also have that | ker(�)| · |im(�)| = |G| = 24,
with |im(�)| | |S

3

| or |im(�)|  6, so | ker(�)| � 4. Thus 4 < | ker(�)| < 24, so ker(�) is a
proper (nontrivial) normal subgroup.

We now consider groups of order 48. The number of Sylow 2-subgroups must be equiva-
lent to 1 modulo 2 and divide 3, so it is 1 or 3. If it is 3, we consider the map � : G ! S

3

defined as the action by conjugation on the set of Sylow 2-subgroups. This map is not trivial,
so ker(�) is a proper nontrivial normal subgroup.

We now consider groups of order 36. The number of Sylow 3-subgroups must be equiva-
lent to 1 modulo 3 and divide 4, so it is 1 or 4. If it is 4, we consider the map � : G ! S

4

,
defined similarly to the above. Then ker(�) is normal, and not equal to either |G| or {1}.

We now consider a group of order 30. The number of Sylow 5-subgroups must be equivalent
to 1 modulo 5 and divide 6, so it is 1 or 6. If it is 6, we have 1+6 ·4 = 25 elements accounted
for, which leaves 5 remaining. If we assume we have more than one Sylow 2-subgroup and
Sylow 3-subgroup, we must have at least 2 elements of order 2 and 4 elements of order 3.
This is more than the remaining 5 elements, so there is only one Sylow 5-subgroup and
groups of order 30 are not simple.

We now consider groups of order 42. The number of Sylow 7-subgroups must be equiva-
lent to 1 modulo 7 and divide 6, so it is 1. Thus the Sylow 7-subgroup is normal.
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We now consider groups of order 60. The number of Sylow 2-subgroups must be equiva-
lent to 1 modulo 2 and divide 3, so it is 3, 5, or 15. The number of Sylow 3-subgroups
must be equivalent to 1 modulo 3 and divide 20, so it is 4 or 10. The number of Sylow
5-subgroups must be equivalent to 1 modulo 5 and divide 12, so it is 6. If the number of
Sylow 2-subgroups is 3, then we consider the map � : G ! S

3

, defined similar to the above.
This map must be nontrivial, so its kernel is a proper nontrivial normal subgroup. Similarly,
if the number of Sylow 3-subgroups is 4 , then we consider the map � : G ! S

4

, and this
map must be nontrivial. Thus there are 10 Sylow 3-subgroups and there are 5 or 15 Sylow
2-subgroups.

We assume that the number of Sylow 2-subgroups is 5, and we consider the map � : G ! S
5

,
defined similar to the above. This map is not trivial, as ker� 6= G. So ker(�) = {1} if G
is simple. We also have A

5

⇢ S
5

. We consider im(�) \ A
5

. This must nontrivial, or else
|G| · |A

5

| = 3600. Thus im(�) \ A
5

/ G. We then consider ��1(A
5

) = {g 2 G | �(g) 2 A
5

}
and claim that it is normal. To prove this, let g 2 ��1(A

5

) and h 2 G. Then �(hgh�1 =
�(h)�(g)�(h)�1. We know �(g) 2 A

5

and A
5

is normal in S
5

, so �(h)�(g)�(h)�1 2 A
5

and
hgh�1 2 ��1(A

5

), so ��1(A
5

) is normal. Thus, if G is simple and ��1(A
5

) 6= {1}, then
��1(A

5

) = G. Since � : G ! A
5

has a trivial kernel, it is an isomorphism and G ⇠= A
5

.

Now we assume that the number of Sylow 2-subgroups is 15. G contains the identity, 6
Sylow 5-subgroups, which yield 24 elements of order 5, and 10 Sylow 3-subgroups, which
yield 20 elements or order 3. This leaves 15 elements remaining. We see that at least two
of the Sylow 2-subgroups, each with order 4, must overlap. Let them be H and K. Then
H\K is a subgroup of order 2. H and K are abelian because they have order 4. We consider
Z(H \ K), which contains both H and K. Thus 4 | |Z(H \ K)|. Since |Z(H \ K)| | |G|,
|Z(H \K)| = 4, 12, 20 or 60. We know that |Z(H \K)| 6= 60, as then H \K would be a
normal subgroup. Also, |Z(H \K)| 6= 4 because |H [K| > 4.

We assume that |Z(H \K)| = 12 or 20, so Z(H \K) has an index of 5 or 3. If Z(H \K)
has index 3, we consider the action of G on the cosets of Z(H \K) by left multiplication,
which yields the map � : G ! S

3

, which is nontrivial, so this contradicts the fact that G is
simple. If Z(H \K) has index 5, then we consider the same action, which yields the map
� : G ! S

5

. By the same argument as before, we see that G ⇠= A
5

. Thus we conclude that
the only simple group of order 60 is I ⇠= A

5

.

The next smallest nonabelian simple group has order 168 = 23 · 3 · 7. It is the the pro-
jective special linear groups in dimension 2 on the field of 7 elements, PSL

2

(F
7

). This is
equal to SL

2

(F
7

)/{nI}, the special linear group modulo the multiples of the identity. Also,
PSL

2

(F
7

) ⇠= PSL
3

(F
2

).
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The Symmetric Group and the Rubik’s Cube
We recall that the symmetric group Sn is the set of permutations of n symbols (with com-
position).

Definition: The cycle type of a permutations is a description of the sizes of its cycles
and how many times each size cycle appears.

Definition: A partition of n is a distinct expression of n as a sum n
1

+ n
2

+ · · · + nk

with n
1

 n
2

 · · ·  nk.

For example, consider (3 4)(1 5 2) in S
7

. There are two 1-cycles ((6) and (7)), one 2-
cycle ((3 4)), and one 3-cycle ((1 5 2)), which corresponds to the partition 7 = 1+ 1+2+ 3.

Proposition: The conjugacy classes of Sn are in one-to-one correspondence with cycle types
or alternatively, with partitions of n.
Proof: Consider for example (1 2 3) and (2 6 7) in S

7

. We must find a g such that
g(1 2 3)g�1 = (2 6 7). We pick a g such that the following takes place under g(1 2 3)g�1:

1 7! 4 7! 4 7! 1 2 7! 1 7! 2 7! 6 3 7! 5 7! 5 7! 3 4 7! 7 7! 7 7! 4

5 7! 6 7! 6 7! 5 6 7! 2 7! 3 7! 7 7 7! 3 7! 1 7! 2

This tells us that g = (1 2 6 5 3 7 4). Note that this g is not unique, as our choice of the
action of g�1 on 1, 3, 4, and 5 was arbitrary.

In general, given � 2 Sn with cycle notation (a1
1

a1
2

· · · a1k1)(a21 a2
2

· · · a2k2) · · · , we can con-
jugate by some element to yield (b1

1

b1
2

· · · b1k1)(b21 b2
2

· · · b2k2) · · · . We can then form ⇡�1 that

sends bji to aji , i.e. we can form ⇡ sending aji to bji .
We must also show that any conjugate permutations have the same cycle structure, but this
can be inferred easily from our previous argument.

Example: The Class Equation for S
4

.
The only possible partitions of 4 are 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. We
identify the conjugacy classes that correspond to these partitions as the identity, the trans-
positions, the 3-cycles, the composition of 2 disjoint 2-cycles, and the 4-cycles. These have
1,
�
4

2

�
= 6, 4 · 2 = 8, (

�
4

2

�
)/2 = 3, and 3! = 6 elements, respectively. Thus the Class Equation

24 = 1 + 6 + 8 + 3 + 6.

Theorem: An is simple for n � 5.
Steps of Proof:
(1) The 3-cycles generate An.
(2) All 3-cycles are conjugate in An for n � 5.
(3) Given any nonidentity element of An, it and its conjugates can be composed in some way
to yield a 3-cycle.
Proof:
(1) Exercise.
(2) Given 2 2-cycles �

1

and �
2

, we can write down a formula for g�1 that sends the elements
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of �
1

to those of �
2

and sends the other elements to the remaining elements in an arbitrary
fashion. This is the method we used above. Then g�

1

g�1 = �
2

. Note that g is not unique.

For example, consider �
1

= (1 2 3) and �
2

= (2 4 5) in A
5

. We choose g�1 defined with

1 7! 4 2 7! 1 3 7! 5 4 7! 2 5 7! 3.

However, we could replace g = (1 2 4)(3 5) with g0 = g � (4 5), and this would still work, as
our choice of the action on 4 and 5 was arbitrary. We see that g and g0 have opposite sign,
so one of them must be in An. This implies that we can always find an even permutation
by which we conjugate to take one 3-cycle to another, so all 3-cycles are conjugate in An for
n � 5.
(3) Consider for example (1 2 3)(4 5 6) = x, g = (4 3 2), and h = (4/2/5). Then we can
calculate

�
gxg�1

�
x�1hx

�
gx�1g�1

�
h�1 = (5 4 3), which is a 3-cycle.

Rubik’s Group

We have 6 centers (which don’t move), 8 corner cubies, and 12 edge cubies. We call the
group generated by rotating the faces, i.e., the group of all possible ways to move the corners
and edges the Rubik’s Cube Group. It would first appear that there is an action of G on
S
8

of the positions of the corners, but we need to account for how they rotate. We see that
we have 8 · 3 = 24 small faces. Then G < S

48

. We have (Z/3Z)8 in this group, which is
generated by 3-cycles of faces belonging to the same corner. We claim that the group of
possible ways to move the corners is (Z/3Z)8 o

�
S
8

where � : S
8

! Aut(Z/3Z)8 sends � to

an automorphism rearranging the factors.

Proposition: The Rubik’s Cube group is a subgroup of ((Z/3Z)8 o
�
S
8

)⇥ ((Z/2Z)2 o
�
S
12

),

the semidirect product of the corners times the semidirect product of the edges. This is a
called a wreath product.

Theorem: The Rubik’s Cube Group has index 12 and in fact is the kernel of � : ((Z/3Z)8o
�

S
8

) ⇥ ((Z/2Z)2 o

�
S
12

) ! (Z/2Z) ⇥ (Z/2Z) ⇥ (Z/3Z) that sends h = ((ai),�, (bj), ⌧) to

(sign(�
1

) + sign(⌧),
P

bj ,
P

ai)

64



Lecture 29
November 15

Generators and Relations

Definition: A free group Fn on a set S = {a
1

, a
2

, · · · , an} or more simply, the free group on
n symbols, is the set of all words in (a, b, c, . . . , nth letter) and their inverses with no obvious
cancellations.

For example aba2b�1c�3b2 is in the free group, but not ab2b�4c3a�1 = ab�2c3a�1, Multiplica-
tion in the group is carried out by performing the obvious cancellations, e.g. (ab2)(b�4c3a�1) =
ab�2c3a�1.

The Universal Property of the Free Group: Given a group G and an ordered list
of elements x

1

, . . . , xn, there exists a unique homomorphism Fn ! G that takes the kth
letter to xk, i.e. it takes a to x

1

, b to x
2

, etc.

Definition: A set of elements x
1

, . . . , xn 2 G generates G if the corresponding map
Fn ! G that maps the kth letter to xk is surjective. This means that every element in G
has a corresponding “word” in the free group.

We now consider the dihedral group Dn it is generated by two elements: a rotation x and
a reflection y. To understand this group better, we examine some of the relations of these
elements. We see that xn = 1, y2 = 1, and xy = yx�1. We would like to be able to write a
statement describing the complete list of relations for this group, as we did for the generators
with the free group. We consider the map � : F

2

! Dn which takes a to x and b to y. We
know that � is surjective, so Dn

⇠= F
2

/ ker(�) by the First Isomorphism Theorem. Relations
can then be thought of as element of ker(�). We see that an 2 ker�, b2 2 ker(�), and
abab 2 ker�.

Definition: A complete set of relations for a group with a generating set is a set of gener-
ators of the kernel of the map � : Fn ! G.

Definition: A Cayley Graph is a visualization of a group with a generating set. The
graph is a collection of vertices and directed edges. The vertices represent the elements of
the group and an edge is formed from an element x to gx, where g is in the generating set.
The edge is labeled g.

Our Cayley graph for Dn is a tree, i.e. it contains no loops. This is because there is no
relation between a and b. Drawn in the plane, it exhibits fractal structure, with four edges
at every vertex.

We now consider D
4

, whose elements are 1, x, x2, x3, y, xy, x2y, x3y. The Cayley graph is
the following:
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1

x3 x2

x

y

xy x2y

x3y

Here the red arrows represent left multiplication by x and the blue line represent left multi-
plication by y. The blue lines are not directed because y = y�1. We observe several loops in
this diagram that correspond to relations, such as xyxy = 1.

Bilinear Forms

Definition: Given a vector space V over a field K, a bilinear form is a map B : V ⇥V ! K
that is linear in both arguments, i.e. B(av, w) = aB(v, w) and B(v

1

+ v
2

, w) = B(v
1

, w) +
B(v

2

, w) and B(v, aw) = aB(v, w) and B(v, w
1

+ w
2

) = B(v, w
1

) +B(v, w
2

).

Some nice properties B could have:

1) Symmetric: B(v, w) = B(w, v).
Subcategory: Positive-Definite (K = R): B(v, v) > 0 for v 6= 0.

2) Skew-Symmetric: B(v, w) = �B(w, v).
Caveat: In fields of characteristic 2, this condition is vacuous and we instead require that
B(v, v) = 0. We see that this would imply the former condition by examining 0 = B(v +
w, v+w) = B(v, v) +B(v, w) +B(w, v) +B(w,w) = B(v, w) +B(w, v). The previous equa-
tion is known as the polarization identity. The polarization identity on a the standard inner
product yields the parallelogram identity.

When K = C, our forms are bilinear over R, but sesquilinear over C. This means they
are conjugate linear in one argument but linear in the other, i.e. B(cv, dw) = cdB(v, w).
This leads to a third type of form:

3) Hermitian: B(v, w) = B(v, w). A Hermitian form is also called a symmetric sesquilinear
form.
Lemma: B(v, v) 2 R if B is Hermitian.
Proof: B(v, v) = B(v, v), so B(v, v) 2 R.
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More on Bilinear Forms

Given a bilinear form B on V and a basis {vi}, we can associate with B a matrix A with
entries Aij = B(vi, vj).

Claim A determines the bilinear form.

Proof: B

✓
nP

i=1

aivi,
P

bjvj

◆
=

nP
i=1

nP
j=1

(aibjB(vi, vj)) =
nP

i=1

nP
j=1

(aibjAij).

Claim: If each element is expressed in this basis, B(v, w) = vTAw.

Proof: One method is just to compute the product:
⇥
a
1

· · · an
⇤ ⇥
Aij
⇤
2

64
b
1

...
bn

3

75 =
⇥
a
1

· · · an
⇤

2

66664

P
j
bjA1j

...P
j
bjAnj

3

77775
=

P
i

P
j
aibjAij . This is the same result we found previously.

Another method is to see that (v, w) 7! vTAw defines a bilinear map, and vTi Avj = Aij .
Thus we have two bilinear forms that take the same values on the basis vectors, so they must
be equivalent.

Now we shall consider a change of basis. We let wi = Pvj , i.e. wi =
P
j
P � ijvj . If we

think of the {vi} as the standard orthonormal basis, then wi =

2

64
Pi1
...

Pin

3

75. We then compute

B(wi, wj) = B(Pvi, Pvj) = (Pvi)
T A (Pvj) = vTi

�
P TAP

�
vj . In the {vi} basis, the matrix

P TAP has entries equal to vTi
�
P TAP

�
vj .

Symmetric Forms

Examples:

A =

2

4
1 0 0
0 1 0
0 0 1

3

5 with form B

0

@

2

4
v
1

v
2

v
3

3

5 ,

2

4
w
1

w
2

w
3

3

5

1

A = v
1

w
1

+ v
2

w
2

+ v
3

w
3

. This is the standard

inner product.

A =

2

4
�1 0 0
0 1 0
0 0 1

3

5 with form B

0

@

2

4
v
1

v
2

v
3

3

5 ,

2

4
w
1

w
2

w
3

3

5

1

A = �v
1

w
1

+ v
2

w
2

+ v
3

w
3

. This form is not

positive-definite, as we can see in B

0

@

2

4
1
0
0

3

5 ,

2

4
1
0
0

3

5

1

A = �1. We can also write B(v, v) =

�v2
1

+ v2
2

+ v2
3

. The level sets of this expression (�v2
1

+ v2
2

+ v2
3

= c) are hyperboloids with
v
1

as their main axis. When c = 0, the surface is a degenerate hyperboloid, i.e. a conical
surface, known as the null cone. If c < 0, the surface is a hyperboloid of two sheets that lies
inside the null cone, while if c > 0, the surface is a hyperboloid of one sheet that lies outside
the null cone.
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Theorem: A matrix A is symmetric and positive-definite if and only if A = P TP for
some invertible matrix P , i.e. up to a change of basis, any symmetric positive-definite bilin-
ear form is equivalent to the standard one.
Proof: Delayed.

Nondegenerate Forms and Orthogonality

Definition: A symmetric (or skew-symmetric) form is nondegenerate if there is no vec-
tor v (called a null vector) such that B(v, w) = 0 8 w.

Definition: Given that W is a subspace of V which is endowed with a bilinear form B, the
orthogonal subspace W? = {v 2 V | B(v, w) = 0 8 w 2 W}.

Example: Let W = span

0

@

2

4
1
1
0

3

5

1

A in R2,1 = R3 endowed with the previous bilinear form.

(This notation means that there are two positive ones on the diagonal and one negative

one). We see that W? = span

0

@

2

4
1
1
0

3

5 ,

2

4
0
0
1

3

5

1

A. We see that W ⇢ W?.

Proposition: Suppose B is nondegenerate on V . Then B is nondegenerate on W ⇢ V
if and only if V = W �W?.
Proof: The backward direction is easy, as V = W �W? implies that W \W? = 0. This
means that there is no nonzero vector in W that yields 0 under the form when paired with
every vector in W , i.e. B is nondegenerate on W .
For the forward direction, we use the above fact that the nondegeneracy of B on W implies
that W \ W? = 0. We want to express W? in terms of the matrix for the form, A. We
begin by describing the set of degenerate vectors in V in terms of A. This is just ker(A),
as wTAv can only be 0 for all w 2 V if Av = 0. Now we want to describe the degenerate

vectors in W?. We can express the condition of degeneracy as
⇥
~w
1

· · · ~wk

⇤T
Av = 0, with

v 2 W? and {wi} being a basis of W , since this implies that ~wT
i Av = 0 for all {wi}. We

must determine the rank of
⇥
~w
1

· · · ~wk

⇤T
A. We know that A is invertible, since B is

nondegenerate on V . Since multiplication by an invertible matrix does not change the rank,

and the rank of
⇥
~w
1

· · · ~wk

⇤T
is k, the rank of the product is k as well. Thus the dimension

of W? is n� k by the Rank-Nullity Theorem. Since W \W? = 0, V = W �W?.
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Symmetric Forms

Let B(·, ·) be a symmetric form on V , a vector space over R of dimension n. We saw
that if B is nondegenerate on v, nondegeneracy on W ⇢ V implies that V = W �W?.

Theorem: There exists an orthogonal basis for V , and moreover we may take B(vi, vj) =
1,�1, or 0, where {vi} is the basis of V . Equivalently, if A is a symmetric matrix, then there
exists an invertible matrix P such that P TAP = diag(1, · · · , 1,�1, · · · ,�1, 0, · · · , 0).
Proof: To see the zeroes, we take some basis of V ?. These are degenerate vectors. We
then restrict the form to the complement of V ?, where it is nondegenerate. We then claim
that given a nondegenerate symmetric form, there exists v such that B(v, v) 6= 0. To prove
this, we consider B(v + w, v + w) = B(v, v) + B(w,w) + 2B(w,w), so B(v, w) = 0, i.e. the
form is trivial. We then induct on the dimension of V . There must be some v such that
B(v, v) 6= 0. We rescale it to �v, which implies that B(�v,�v) = �2v. We then can choose
� to be ±1. We then consider span(v) � span(v)?, which gives us a matrix of the form2

4
⇤
1⇥1

0
1⇥n�1

0n�1⇥1

*n�1⇥n�1

3

5. We then induct on the dimension of span(v)?.

Theorem: The number of 1s, number of -1s, and the number of 0s in the previous the-
orem are independent of our choice of basis.
Proof: The number of 0s is the dimension of V ?. We realize that the number of 1s and
-1s is dim(V ) � dim(V ?). We claim that the number of -1s is the largest dimension of
a negative definite subspace, i.e. a subspace such that B(v, v) < 0 for all v 6= 0 in the
subspace. To prove this, we let {v

1

, . . . , vk} be our basis vectors of the k columns with 1s.
These are orthogonal. We suppose {w

1

, . . . , w`+m} is a basis for a negative-definite subspace,
with m > 0. We then claim that {v

1

, . . . , vk, w1

, w`+m} is a linearly independent set. We
assume for the sake of contradiction that it is not. Then there is some linear combination
a
1

v
1

+ · · ·+akvk = b
1

w
1

+ · · ·+b`+mw`+m with not all the coe�cients equal to 0. We call this
combination u. Since u is in the negative-definite subspace, B(u, u) < 0 unless u = 0. How-
ever, since u is a combination of the {vi}, which have positive entries, B(u, u) =

P
a2i > 0

unless u = 0. Thus u = 0, so the linear combination is trivial and thus the set is linearly
independent. This gives us a classification of the nondegenerate symmetric bilinear forms on
Rn up to a change of basis. We have Bk,n�k, a form with k 1s, and n � k -1s, and Rk,n�k,
i.e., Rn equipped with this form.

We have already considered O(n), the set of matrices the preserved the standard inner
product, i.e., O(n) = {M 2 GLn(R) | hMv,Mwi = hv, wi 8 v, w}. We can extend this to
matrices that preserve any bilinear form: O(k, n�k) = {M 2 GLn(R) | Bk,n�k(Mv,Mw) =
Bk,n�k(v, w) 8 v, w}. These are matrices M such that vTMTAk,n�kMw = vTAk,n�kw, i.e.

MTAk,n�kM = Ak,n�k, where An,n�k =


Ik 0
0 �In�k

�
.

Corollary: If M 2 O(n, n� k), det(M) = ±1.
Proof: det(MT ) det(An,n�k) det(M) = det(An,n�k) implies that det(M)2 = 1.

We also see that SO(k, n� k) < O(k, n� k) is the set of matrices with determinant 1.
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Theorem: Given a symmetric matrix A, A is positive-definite, i.e. B(v, w) = vTAw is

positive-definite, if and only if det(Ai) > O 8 i, where A =


Ai ⇤
⇤ ⇤

�
, i.e. the determinants

of all the upper left blocks (known as the principal minors) are positive.
Proof: For the forward direction, we claim that a positive definite matrix has a positive
determinant, i.e. Ai is the matrix for the form B on a subspace Vi, spanned by {v

1

, . . . , vi},
the first i basis vectors. Since A is positive-definite, we know that A = P T IP for some
invertible matrix P , so det(A) = det(P 2) > 0. Thus det(A) = 1.
For the backward direction, we induct on the dimension of Vi The base case is simple: if
B(v

1

, v
1

) > 0, then B is positive-definite on V
1

= span(v
1

). In our inductive step, we assume
B is positive definite on Vn�1

. We change basis on Vn�1

to yield the identity for Ai, i.e. the

matrix is now


In�1

⇤
⇤ ⇤

�
.If we change basis, the sign of the determinant does not change.

Thus we have two cases.
Case 1: We have that B(vn, vn) = 0. We change basis so that we have �vn instead and
compute B(vi + �vn, vi + �vn) = B(vi, vi) + 2�B(vi, vn) + 0 for some � 6= 0. This is not 0,
so we now have the second case.
Case 2: We have B(vn, vn) 6= 0. We choose v0i = vi � B(vi,vn)

B(vn,vn)
vn with B(v0i, vn) = 0. In our

new basis, we have


In�1

0
0 ⇤

�
, where ⇤ > 0 because the determinant is greater than 0, so

the matrix is positive-definite.
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Lecture 32
November 22

Hermitian Forms and Group Theoretic Consequences

We consider a Hermitian form B : V ⇥ V ! C, where V is a vector space of dimension
n over C. We have that B is conjugate linear in the one factor (usually the first) and lin-
ear in the other factor, i.e. B(cv, w) = cB(v, w) and B(v, cw) = cB(v, w). We also add a
symmetry condition: B(v, w) = B(w, v). For this reason a Hermitian form is also called a
symmetric sesquilinear form. We also see that Re(B) is bilinear and symmetric, while Im(B)
is bilinear and skew-symmetric.

Claim: Let {vi} be a basis over C and let aij = B(vi, vj). In this basis, B(v, w) = v⇤Aw,

where A is the matrix associated with B, and v⇤ = vT .
Proof: We consider B(v, w) = B(

P
civi,

P
djvj) =

P
ciaijdj = v⇤Aw. We see that Hermi-

tian symmetry means B(vi, vj) = B(vj , vi, i.e. A⇤ = A. (A⇤ is known as the adjoint). If we
change basis, we send A to P ⇤AP , because (Pv)⇤A(Pw) = v⇤(P ⇤AP )w..

We see that (CN , h·, ·i) has an operation given by hv, wi = v⇤w. Note that hv, Twi = hT ⇤v, wi,
as hv, Twi = v⇤Tw and hT ⇤v, wi = (T ⇤v)⇤w = v⇤Tw.

We then consider the other linear maps T : CN ! CN preserving h·, ·i. We must have
hTv, Twi = hv, wi, i.e. v⇤T ⇤Tw = v⇤w 8 v, w, which implies that T ⇤ = T�1.

Definition: A linear map T : CN ! CN is unitary if T ⇤ = T�1, or equivalently if it
preserves the operation h·, ·i described above. The unitary maps form a group U(n)

Note that we can now think of the matrix associated with our Hermitian form, A as as-
sociated with a linear map from CN to CN , which we also will call Hermitian.

Spectral Theorem: If T is Hermitian, T has an orthonormal basis of eigenvectors. Equiv-
alently, there is a unitary change of basis that diagonalizes T , i.e. there is some P 2 U(n)
such that P�1TP is diagonal.
Proof: Because our field is C, T must have at least one eigenvector v. We normalize the vec-
tor and then extend it to an orthonormal basis of CN (using the Graham-Schmidt process).

We call our change of basis matrix P
1

, so P ⇤
1

TP
1

=


� ⇤

1⇥n�1

0n�1⇥1

⇤n�1⇥n�1

�
. This matrix must

still be Hermitian, so ⇤
1⇥n�1

= 0
1⇥n�1

. P
1

is unitary because our basis was orthonormal.
We then consider on the subspace spanned by {v

2

, . . . , vn}, i.e. the subspace associated with
⇤n�1⇥n�1

, and proceed by induction.

Theorem: The eigenvalues of a Hermitian operator are real.
Proof: We consider � hv, vi = h�v, v,=i hTv, vi = hv, Tvi = hv,�vi = � hv, vi, so � = � and
� 2 R.

Spectral Theorem over the Reals: If T is symmetric, T has an orthonormal basis
of eigenvectors. Equivalently, there is an orthogonal change of basis that diagonalizes T , i.e.
there is some P 2 U(n) such that P�1TP is diagonal.
Proof: T is Hermitian over VC, so it has a real eigenvalue �, so det(A � �I) = 0, which
implies there is a real eigenvector in V . We then proceed via the same proof as before.
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Powers of Positive Symmetric Matrices

Note that all of the following can be done for Hermitian and unitary matrices in place
of symmetric and orthogonal. We let A be a positive symmetric matrix, so it will have an
orthonormal basis of eigenvectors. (Here a positive matrix is one with an associated positive-
definite form). We define Ar with r 2 R>0

as Arv = �rv if Av = �v, which is well-defined.
An application of this is the polar decomposition, which begins with the following.

Theorem: If A 2 GLn(R), then AAT is symmetric, and the eigenvalues of AAT are positive.
Proof: � hv, vi =

⌦
AAT v, v

↵
=
⌦
AT v,AT v

↵ � 0. None of the eigenvalues can be zero be-
cause A is invertible.

We then consider (AAT )�1/2A. We see that if AAT = I, then A would be orthogonal. We

then claim that (AAT )�1/2A 2 O(n). This is just a calculation:
�
(AAT )�1/2A

�T �
(AAT )�1/2A

�
=

ATT (AAT )�1/2(AAT )�1/2A = AT (AAT )�1(AAT )�1/2A = AT (AT )�1A�1A = I.

Corollary: Given A 2 GLn(R), A = BC for a positive and symmetric matrix B = (AAT )1/2

and an orthogonal matrix C = (AAT )�1/2A. In fact, this decomposition is unique.
Proof: To show uniqueness, we suppose A = B

1

C
1

= B
2

C
2

. with Bi positive and symmetric

and Ci arbitrary. Then
�
B

1

C
1

(B
1

C
1

)T
�
1/2

=
�
B

1

C
1

CT
1

BT
1

�
1/2

=
�
B2

�
1/2

= B.

Theorem: The cosets of O(n) in GLn(R) are in one-to-one correspondence with the set
of positive symmetric matrices. This also works for SO(n) in SL

2

(R).

Example: We know that SL
2

(R) =


a b
c d

�
such that ad�bc = 1 and SO

2

(R) =


cos ✓ � sin ✓
cos ✓ sin ✓

�
,

which we can think of as a circle. The positive symmetric matrices in SL
2

(R) must be of

the form


a b
b c

�
such that ac � b2 = 1. Thus b 2 R, c 2 R>0

, and a = (1 + b2)/c. Thus

SL
2

(R) is topologically equivalent to an open solid torus with core SO
2

(R).
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Lecture 33
November 25

Sample Solutions from Exam 2

2. Let V be a vector space over C of dimension n and let T : V ! V be a linear map.
Suppose that the only eigenvalues of T are 0 and 1. Show that the ker((T � I)n) = im(Tn).

We know that V (�) = ker((T � �I)n) and V =
L

Spec(T )

V (�i). If our eigenvalues are 0

and 1, this tells us that V = V (0) � V (1) = ker((T � I)n) � ker(Tn). We also know that
V = im(Tn) � ker(Tn). This does not immediately imply that ker((T � I)n) = im(Tn),
however. As a counterexample, we could have two lines that span the plan, and we could
rotate one without chaning the span. Thus we use the fact that ker(Tn) and im(Tn) are
T -invariant. We then consider v 2 ker((T � I)n). Then v = vi + vk, with vi 2 im(Tn) adn
vk =2 ker(Tn). We also see that ker(Tn) and im(Tn) are (T � I)n-invariant. This means
that vi and vk are in ker((T � I)n), because (T � I)nv = 0 and im(Tn) \ ker(Tn) = {0}.
Thus vk 2 ker(Tn) \ ker((T � I)n) = {0}, so v = vi and thus ker((T � I)n) = im(Tn).

3. (a) List all isomorphism classes of groups of order 20.
(b) How many distinct isomorphism classes are there?

We see that 20 = 22 · 5. The number of Sylow 2-subgroups is equivalent to 1 modulo 2
and divides 5, so it is either 5 or 1. The Sylow 2-subgroup(s) must have order 4, so they are
C
4

or C
2

⇥ C
2

. The number of Sylow 5-subgroups is equivalent to 1 modulo 5 and divides
4, so it is 1. The Sylow 5-subgroup must have order 4, so it is C

5

. This must be normal,
because it has no proper conjugate subgroups. Thus we have 2 cases, because the product
of the Sylow subgroups is the whole group and one is normal:
1. C

5

o

�
(C

2

⇥ C
2

)

2. C
5

o

�
C
4

In the first case, we consider � : (C
2

⇥ C
2

) ! Aut(C
5

) ⇠= C
4

. Every element in C
2

maps
to something in C

4

of order 2. One option is the trivial map that maps every element to
the identity. This yields a direct product G = C

2

⇥ C
2

⇥ C
5

. Note that we can also look at
this map as � : (C

2

⇥ C
2

) ! C
2

= {1, x2} ⇢ C
4

. Other than the trivial map, the only other
option is the maps that sends two elements to the identity and two elements to x2. If we
choose the latter options, we find G = C

2

⇥ (C
2

o

�
C
5

) = C
2

⇥D
5

= D
10

.

In the second case, we consider � : C
4

! Aut(C
5

) ⇠= C
4

. There are four possible maps.
If x maps to 1, then G = C

4

⇥ C
5

. The maps that map x to x or x3 are equivalent up to
renaming C

4

. If x maps to x2, we find something di↵erent. Showing that it is not isomorphic
to any other case is let as an exercise.

Thus we have 5 isomorphism classes:
1. C

5

⇥ C
2

⇥ C
2

2. C
5

⇥ C
4

3. D
10

4. C
5

o

�2
C
4

, with �
2

(x) = x

5. C
5

o

�3
C
4

, with �
3

(x) = x2.
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Normal Operators

We have previously considered Hermitian operators, i.e. linear maps from Cn equipped
with the usual inner product to itself, with T = T ⇤. We also looked at unitary operators,
which are maps on the same inner product space with T�1 = T ⇤. Both are special cases of
a normal operator, which is a map that commutes with its adjoint, i.e. TT ⇤ = T ⇤T.

Spectral Theorem (Version 2): T is normal if and only if it is diagonalizable by a
unitary transformation, i.e. if there exists an orthonormal eigenbasis.
Proof: Since the field is C, T must have an eigenvector v. We normalize this vector and
then extend it to an orthonormal basis. Then we change to this basis by a unitary trans-
formation: U�1TU . This is still normal, as (U⇤TU)(U⇤T ⇤U) = U⇤TT ⇤U = U⇤T ⇤TU =
(U⇤T ⇤U)(U⇤TU). Then we see

U⇤TU = T
1

=

2

6664

a
1

a
2

· · · an
0
... M
0

3

7775
and T ⇤

1

=

2

6664

a
1

0 · · · 0
a
2

... M⇤

an

3

7775
.

We consider the upper left entry of the two products (T
1

T ⇤
1

)
11

=
P

aiai =
P |ai|2 and

(T ⇤
1

T
1

)
11

= aiai = |ai|2. If these are equal, then ai = 0 8 i > 2. We then induct, considering
M and M⇤, which must also commute. This diagonalizes the matrix.

Corollary: Conjugacy classes of U(n) are in one-to-one correspondence with diagonal uni-
tary matrices.

Note that a normal operators N can be represented as N = U⇤DU , where U is unitary
and D is diagonal.

Skew-Symmetric Bilinear Forms

We consider a skew-symmetric bilinear form B(·, ·) on V of dimension n over the field R.

Theorem: Suppose B is nondegenerate. Then n is even, and, after a change of basis,

B(v, w) = �vTJnw, where Jn =


0m⇥m �Im
Im 0m⇥m

�
. This new basis is called the standard

symplectic basis for B. If we write this basis as {v
1

, . . . , vm, w
1

, . . . , wm}, then it has the
following properties:
1. B(vi, wj) = �ij
2. B(vi, vj) = B(wi, wj) = 0.
Proof: We shall prove by induction on the dimension of V . The base cases are that 0
works and 1 doesn’t. In the inductive step, we choose v 2 V such that there exists w 2 v
such that B(v, w) 6= 0. We rescale one of the vectors such that B(v, w) = 1. Then we let
V
1

= span(v, w) and V
2

= {u 2 V | B(u, u0) = 0 8 u0 2 V
1

}. Because B is nondegen-
erate, dim(V

2

) + dim(V
1

) = dim(V ) and V
2

\ V
1

= {0}. Then the matrix of the form is2

4


0 �1
1 0

�
0n�2⇥n�2

0n�2⇥n�2

⇤n�2⇥n�2

3

5. We then proceed by induction and rearrange our basis to yield

the correct block form.
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Lecture 34
December 2

Representations of Finite Groups

Definition: A representation of a group G on a vector space V is a linear action of G
on V (i.e. elements of G act by linear transformations), or equivalently, a homomorphism
R : G ! GL(V ).

We use Rg to denote R(g), and we see that g · (h · v) = (gh)v is equivalent to RgRh(v) =
Rgh(v).

We’ll consider complex representations which are representations of G on Cn, i.e., homo-
morphisms to GLn(C).

Definitions:

The trivial representation is Rg = I 8 g 2 G.

A representation is faithful if Rg 6= Rn if g 6= n, which gives an injection G ,! GLn(C).

The dimension of a representation is the dimension of the vector space.

The character of a representation R : G ! GLn(C) is a map �R : G ! C defined by
�R(g) = tr(Rg).

Examples:

We consider a one-dimensional representation R : G ! GL
1

(C) = C⇤. Then [�R(g)] = Rg,
i.e. they are equal in C⇤ ⇢ C.

We consider the group D
3

= {1, x, x2, y, yx, yx2}, where x is a rotation by 2⇡/3 and y is a
reflection. We know that D

3

⇠= S
3

, so we can also represent this way with x = (1 2 3) and
(1 2). In terms of generators and relations, D

3

is generated by x and y, with x3 = 1, y2 = 1,
and yx = x�1y. We consider the one-dimensional trivial representation, R

triv

= [1]. We then

consider the standard two-dimensional representation, defined with Rst(y) =


1 0
0 �1

�
and

Rst(x) =


cos 2⇡/3 � sin 2⇡/3
sin 2⇡/3 cos 2⇡/3

�
=

�1/2 �p
3/2p

3/2 �1/2

�
. We can also consider R

sign

: S
3

!
{±1} ⇢ C⇤ defined by g 7! sign(g). In one dimension, R

sign

(x) = [1] and R
sign

(x) = [�1].
Now let’s build a table:

1 x x2 y yx yx2

�Rtriv 1 1 1 1 1 1
�Rsign 1 1 1 �1 �1 �1
�Rst 2 �1 �1 0 0 0

Claim: �R is constant on conjugacy classes.
Proof: �R(ghg�1) = tr(Rghg�1) = tr(RgRhRg�1 = tr(Rh) = �R(h)

75



Direct Sums, Irreducible Representations, and Maschke’s Theorem

Suppose we have a representation of G on a vector space V .

Definition: W ⇢ V is invariant under the action of G if g ·w 2 W 2 W forall w 2 G, g 2 G.

Definition: A representation if irreducible if there are no proper nontrivial subspaces.

Definition: A direct sum of representations R
1

: G ! GL
(

V
1

) and R
2

: G ! GL
(

V
2

) is the

map R : G ! GL(V
1

� V
2

) where Rg(v1 � v
2

) = Rg1(v1)�Rg2(v2), i.e. Rg =


Rg1 0
0 Rg2

�
.

Maschke’s Theorem: Every representation is isomorphic to a direct sum of irreducible
representations.
Proof First we shall show that any complex representation of a finite group preserves
some positive definite Hermitian form. We take the standard Hermitian form h·, ·i on Cn.

We let B(v, w) = 1

|G|
P
g2G

hg · v, g · wi. This form is Hermitian, as it is symmetric, linear

and conjugate linear in the appropriate arguments, and positive definite, as g · v 6= 0 if
v 6= 0. With h 2 G, we then claim that B(v, w) = B(h · v, h · w) = B(Rh(v), Rh(w)).

B(h · v, h · w) = 1

|G|
P
g2G

hg · h · v, g · h · wi = 1

|G|
P

gh�12G
hgh�1 · h · v, gh�1 · h · wi = B(v, w).

Now, given a reducible representation, we consider W ⇢ V that is invariant under G. We
let B(·, ·) be the invariant Hermitian form and let W? be its orthogonal complement with
respect to B. If u 2 W?, then B(u,w) = 0 8 w, so B(gu, gw) = 0 8 w, so gu 2 W?. Thus
W? is also invariant under G.

Morphisms of Representations

We consider T : V ! W . Suppose G acts on V and W . Then T is G�linear or is a
morphism of representations of G if T �RV,g = RW,g � T 8 g 2 G.
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Lecture 35
December 4

Representations and Character Tables

Schur’s Lemma: Suppose R : G ! GL(V ) and R0 : G ! GL(V 0) are two irreducible
representations. Then:
1. Given T : V ! V 0 that commutes with the action of G, then T = 0 or T is an isomor-
phism.
2. If R = R0, V = V 0 and T = �I.
Proof: Consider ker(T ) ⇢ V . We claim that this is a G-invariant subspace, i.e. if v 2 ker(T ),
then Rg(v) 2 ker(T ) 8 g 2 G. We see that Tv = 0, then TRg(v) = R0

gTv = 0, so
Rg(v) 2 ker(T ). Thus ker(T ) = {0} or V . If ker(T ) = V , T = 0. If ker(T ) = 0, we consider
im(T ) ⇢ V 0. We claim this is also a G-invariant subspace. Suppose w = Tv 2 im(T ). Then
R0

g(w) = R0
g(Tv) = TRgv 2 im(T ). Thus im(T ) = {0} or V 0. It is not {0} unless V = 0

or T = 0. So the only nontrivial case is that ker(T ) = {0} and im(T ) = V . Thus T is an
isomorphism.
Now we assume that R = R0, and we consider T � �I with � an eigenvalue. Then ker((T �
�I)n) is G-invariant, so it is V , as it can’t be {0} because there already is an eigenvalue.
Thus T = �I.

We conclude from this that if V is a general representation, i.e. V ⇠= V
1

� · · · � Vk and
V ⇠= W

1

� · · ·�W`, where Vi and Wj are irreducible representations, then the lists {Vi} and
{Wj} are, up to reordering, isomorphic.

We recall that the character of a representation R : G ! GL(V ) is a map �R : G ! C

defined by �R(g) = tr(Rg). Note that this is not a homomorphism.

We consider a positive-definite Hermitian form on the space of all maps G ! C given

by h�,�0i = 1

|G|
P
g2G

�(g)�0(g).

We consider some useful facts about the character �R : G ! C:
1. �R(ghg�1 = �R(h) because tr(RgRhRg�1 = tr(Rh).

2. �R(g�1) = �R(g). This follows because any representation T is unitary with respect to
some basis, so the eigenvalues all have a norm of 1. Thus �R(g) is the sum of eigenvalues,
weighted by their multiplicities, and �R(g�1) is the sum of the reciprocals of the eigenvalues,
which is the sum of the conjugates, because ��1 = � if �� = 1.

Theorem: The characters of irreducible representations are orthonormal, i.e. h�R,�R0i = 1
if R ⇠= R0 and 0 otherwise. Additionally, the characters of irreducible representations span
the space of maps G ! C which are constant on conjugacy classes (known as class func-
tions).
Proof: We consider two matrices A and B of size m ⇥ m and n ⇥ n, respectively. We
consider the operator FA,B on Cm⇥n (the vector space of m ⇥ n complex matrices) given
by M 7! AMB. Then tr(FAB) = tr(A)tr(B). We see this by taking Mij = �ij . Then
(AMB)ij = aiibjj , so tr(FA,B) =

P
i

P
j aiibjj =

P
i aii

P
j bjj = tr(A)tr(B). We consider R,

a representation of dimensionm on V and R, a representation of dimension n on V 0 and define

� : Cm⇥n ! Cm⇥n with M 7! 1

|G|
P
g2G

R�1

g MR0
g. Since M corresponds to a linear map from

V to V 0, �(M) commutes with the action of G. Also, if M commutes with the action of G,
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then �(M) = M . We shall compute the trace of �. Its image is the subspace of maps from V

to V 0 that commute with action of G. Thus tr(�) = tr

✓
Ik ⇤mn�k

0mn�k 0mn�k

�◆
= k, where k is

the dimension of the subspaces described above. Alternatively, tr(�) =
1

|G|
P

tr(FR�1
g ,R0

g
) =

1

|G|
P

tr(R�1

g )tr(R0
g) =

1

|G|
P
�R(g�1)�R0(g) =

1

|G|
P
�R(g)�R0(g) = h�R,�R0i. Then if R

and R0 are irreducible representations and R � R0, h�R,�Ri is the dimension of the space
of morphism from V to V , which is dim({�I}) = 1 by the second part of Schur’s Lemma.
Also, h�R,�R0i = 0. Thus the characters of irreducible representations are orthonormal.
Now we consider a useful lemma:
Lemma: If a class function � : G ! C is orthogonal to all maps, then the linear map
1

|G|
P
�(g)Rg is 0.

Proof: Exercise. It su�ces to check this for irreducible representations and to show T com-
mutes with the action of G. Then we use Schur’s Law.

Continuing the proof, we now consider the regular representation of G. Here V is the com-
plex span of {eg}, where h ·eg = ehg and h · (P ageg) =

P
agehg. We see that the elements of

GL(V ) are permutation matrices. Then T =
1

|G|
P
�(g)Rreg

g = 0, where � is a class function

that is orthogonal to all maps by the previous lemma. Then Te
1

=
1

|G|
P
�(g)Rreg

g (e
1

) =

1

|G|
P
�(g)eg, which is not zero unless �(g) is zero for all g. Thus there is a representation

that shows that a class function orthogonal or all other maps is 0, which shows that the
characters of irreducible representations span the space of class functions G ! C.

Corollary: (a) The number of distinct irreducible representations is the number of con-
jugacy classes.
(b) If we list the distinct irreducible representations V

1

, · · ·Vk, then any representations V is
uniquely a direct sum of mi copies of Vi, with mi = hchiV ,�Vii
Proof: Exercise.
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