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Exercise 1. a)

We make the following conjecture: f1 + f3 + ... + f2n−1 = f2n. We will prove this
with induction. The base case is trivial: (1) + (2) + (5) = (8). Our inductive step is
f2n = f2n−1 + .... + f3 + f1 ⇒ f2(n+1) = f2n+1 + f2n−1 + .... + f3 + f1. Well, from
the recurrence relation we know that f2n+2 = f2n+1 + f2n, but by assumption we know
that f2n = f2n−1 + .... + f3 + f1, so plugging this into the previous equation we have
f2n+2 = f2n+1 + f2n−1....+ f3 + f1. And so the proof is done.

Exercise 3 b)

Our base case is simple, we have 3|f4 = 3. We must assume 3|f4n and show that 3|f4(n+1).
Well, by the recurrence relation we know that f4(n+1) = f4n+3 + f4n+2, which we can ex-
pand (once again by the recurrence relation) to be f4n+4 = (f4n+2 + f4n+1) + (f4n+1 + f4n)
which we may once again expand to be f4n+4 = ((f4n + f4n+1) + f4n+1) + (f4n+1 + f4n)
which we may rewrite as f4n+4 = 3(f4n+1) + 2(fn), and because we know that fn is divis-
ible by 3, we know that 2 times fn must also be divisible by three, and we know that the
3(f4n+1) term must also be divisible by three because three times any integer is divisible
by three, and because the sum of two values that are both divisible by three is also divisi-
ble by three, we know that the lefthand side must also be divisible by there and we are done.

Exercise 4

Starting with the recurrence relation an = an−1 + an−2, we may rewrite as an =
(an−2 + an−3) + (an−3 + an−4) which can again be rewritten as an = ((an−3 + an−4) +
(an−4 + an−5)) + ((an−4 + an−5) + an−4), which can once again be rewritten as an =
(((an−4 + an−5) + an−4) + (an−4 + an−5)) + ((an−4 + an−5) + an−4) which can be combined
to be an = 5(an−4) + 3(an−5). Assuming that 5|n, we know that n can be written as 5k
where k is some integer, so we may rewrite the equation to be a5k = 5(a5k−4) + 3(a5k−5).
Our base case is simple, we have 5|a5 = 5. We must show that 5|a5k implies that 5 divides
a5(k+1) = 5(a5(k+1)−4) + 3(a5(k+1)−5) case, so a5k+5 = 5(a5k+1) + 3(a5k), but we know by
assumption that a5k is divisible by 5, so we have shown that 5|a5k ⇒ 5|a5(k+1).

Exercise 31
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We can say that our equation hn = 4hn−2 is equivalent to λn = 4λn−2, and divide
our entire equation by λn−2 to get λ2 = 4, so we know λ = ±2. We then have hn =
C1(2)2+C2(−2)n. And we know from the statement of the problem that h0 = C1+C2 = 0⇒
C1 = −C2. We also have h1 = C1(2) + C2(−2) = 1⇒ 4C1 = 1⇒ C1 = 1/4⇒ C2 = −1/4.

This implies that hn = (2n)
4 −

(−2n)
4 = 2n−2 − (−2)n−2.

Exercise 39

Say we currently have the count of all possible combinations (call this count an) of
monominos and dominoes fitting in size 1 × n that satisfy the ”no two consecutive domi-
noes” condition, for arbitrary n, and say we are tasked with finding the count of possible
combinations for size 1×(n+1). Well, with the (n+1)th spot we may put a monomino, and
with this placement we would have the same number of possible scenarios as we did with
size n (that is, an). We may also put a domino in this new spot, which would also bleed over
into the existing spots, which means we surely couldn’t have an again, and we also know
we couldn’t have an−1 with this setup because an−1 includes the cases where dominoes are
at this closest edge which would violate the ”no two consecutive dominoes” condition. So
we must put a monomino after the inserted domino to be allowed to consider all possible
combinations for that size. That is, we must use an−2 to include the scenario of adding a
domino in this new location. Therefore an+1 = an +an−2 or equivalently an = an−1 +an−3.
We can find from calculating manually all possible scenarios that a3 = 3 and a1 = 1 as well
as a2 = 2 and using the recurrence relation we discovered we conclude that a0 = 1, which
gives us the initial conditions a0 = 1, a1 = 1, and a2 = 2.

Exercise 40

Say we currently have the count of all possible scenarios (taking into account restrictions)
for a string of length n and call that count an, now let’s consider the n + 1 case. In that
new spot, we could put a 2 which would give us all the previous count (an), but we may
also insert a 0 and then a 2 in the previous (nth) spot or a 1 and then a 2 in the nth spot,
each of which have an−1 possible counts, so our recurrence relation is an+1 = an + 2an−1,
or equivalently an = an−1 + 2an−2. Let’s now handle our initial conditions, a0 and a1. For
a1, we obviously have three choices (0,1,2) so we say a1=3. To find a0, we must find a2
and use it to calculate a0. For a2 we may put a 0 or 1 in the first spot, and for each of
those cases we can only put a 2 in the second spot, or we could put a 2 in the first spot,
in which case we have 3 things we could put in the second spot. This totals a2 = 5 Using
our recurrence relation we find that 5 = 3 + 2(a0), and solving for a0, we get a0 = 1. Now,
to solve this recurrence equation we must notice its equivalence to λn = λn−1 + 2λn−2

dividing by λn−2 we get λ2 = λ + 2 ⇒ λ2 − λ − 2 = 0 Solving for λ using the quadratic
formula (for which we spare you from the scratch work), we get λ1 = −1 and λ2 = 2, so
an = C1(−1)n + C2(2)n. We know from our initial conditions that a0 = 1 = C1 + C2, and
we know that a1 = 3 = −C1 + 2C2, taking the sum of these two equations 4 = 3C2 so
C2 = 4

3 ⇒ C1 = − 1
3 . This implies that an = − 1

3 (−1)n + 4
3 (2)n.

2


