
Notation: mA and mB are the masses of the objects A and B, respectively.
T is tension, F is force. The x-axis is horizontal and increasing to the right,
and the y-axis is vertical and increasing upwards.

You’re asked for acceleration, so you know at some point that you’ll be
dealing with F = ma. Assumptions:

1. No friction, anywhere.

2. The rope is massless.

3. The pulleys are massless.

4. Gravity is constant in this region.

5. The rope never goes slack.

First, note that these assumptions imply that the tension in the rope is
constant everywhere, so I’ll neglect any subscripts on the tension T .

If you do some force diagrams on the two boxes, you’ll get two equations:
Box A:

ΣF = 2T x̂ = mA~aA = mAaAx̂ (1)

Box B:
ΣF = T ŷ −mBgŷ = mB~aB = mBaB ŷ (2)

The unit vectors aren’t necessary, they’re just there for completeness and so
you know explicitly what directions the accelerations will be. From now on, no
more directions. Also, I’ve used g as a positive contant and chosen my force
directions (signs) appropriately (aB will be downwards in an upwards coordinate
system, so it will be negative).

Now, you don’t care about T , so let’s eliminate those:

mAaA = 2mB(aB + g) (3)

Just to check some units at this point, you have mass and acceleration on
the left and mass and acceleration on the right. Checking dimensions is never
a bad idea and can catch mistakes early.

So we need a way to relate the two equations. Our force system had two
equations and three unknowns (aA, aB , and T ), so we need another equation.
The missing link comes from thinking about how the rope behaves. For every
meter that box A moves to the right, how much does box B have to move? I
assert that if A moves 1 unit, then B will move 2 units. This comes from the
idea that moving A 1 unit causes 1 unit of rope above the pulley and 1 unit
of rope below the pulley to become available, so B will take up the slack. You
could also do the opposite way (if B moves 1 unit, how much does A move), but
that one is harder for me to think about. This is why I included assumption 5.

So, we have ∆xB = 2∆xA. Differentiate both sides to accelerations, and
you get aB = 2aA. Cute. But! Remember to account for the signs– we’re not
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paying attention to direction! In truth, A moving 1 unit will cause B to move
−2 units, in our coordinate system. Very tricky. So aB = −2aA.

Plug and chug:
mAaA = 2mB(−2aA + g)

aA(mA + 4mB) = 2mBg

aA =
2mB

mA + 4mB
g (4)

and

aB =
−4mB

mA + 4mB
g (5)

Let’s do some sanity checks. If mB is zero, then nothing should move, and (4)
agrees with that. If mA is zero, then, well, funny things happen, and equation
(1) doesn’t make sense anymore. Physically, probably it’d mean that the rope
would go slack or something, and that’s not okay, so we can ignore this case.

Note that the coefficient can never be greater than 1, so A will never accel-
erate faster than g. Also a good sign.

For (5), if we let mA go to zero, then we just recover aB = −g, which makes
perfect sense. If we let mB go small, then we get a small aB , which also makes
sense, as a small mass pulling a big mass will have a small acceleration.

If we had missed the negative sign in aB = −2aA, then the addition sign in
the denominator of (4) would be a subtraction sign, and aA could go negative,
which doesn’t make sense. So it’s good that we noticed it.

Bonus! Let’s do some energy. Say that we start it out with B at height 0
and both masses initially at rest and let it go for some time t. Then va = aAt:

vA =
2mB

mA + 4mB
gt

and

vB =
−4mB

mA + 4mB
gt

By the work-energy theorem, the work that gravity does on B will equal the
kinetic energy gained by the masses. If we messed up our accelerations, then
the work-energy theorem will tell us! The work done is given by

W =

∫ y1

y0

~F · dl = mBgh

where h = ∆y = 1
2aBt

2. The force is downwards and we’re integrating
downwards, so the dot product is positive, so positive work is done on the
system by gravity. Note that since aB is in the negative y direction, we must
remember that mg is negative as well to keep the work done positive. So we’ll
put a minus sign on the expression for work to reflect that.

So:
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(Here, time cancels out– very cool. But of course, it has to, or else the WE
theorem would not (in general) hold for all times.)

2mBgaA
?
= mAa

2
A + mB(−2aA)2

2mBg
?
= mAaA + 4mBaA

2mBg
?
= (mA + 4mB)aA

2mBg
?
= (mA + 4mB)

2mB

mA + 4mB
g

2mBg = 2mBg X

So it’s consistent! We did some sanity checks on our accelerations and they
seemed reasonable, and we checked it with a completely different bit of physics
and it still seems to work out. We can be reasonably confident with it.
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