
Page 1 of 3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 411 Computer Organization
Spring 2014

Problem Set #3

Issued Thursday, 2/13/14; Due Thursday, 2/20/14 (hardcopy, beginning of lab)

Feel free to get help from others, but the work you hand in must be your own. Please enter your
answers in the space provided. Also, note that once solutions have been handed out, late work
may not be accepted.

Problem 1: Converting Instructions to Assembly Language (35 points)
The conversion of a mnemonic instruction to its binary representation is called assembly. This tedious
process is generally delegated to a computer program for a variety of reasons. In the following
exercises, you will get a taste of what the task of translating from assembly to machine language is
like.

a) Match the instructions below with their hexadecimal counterparts. Enter your answer as the letter
‘A’-‘R’ in the blank space to the left of each instruction. NOTE: Do not use the MARS assembler to
do this exercise. Using MARS will not only deprive you of some hand-coding practice, but may also
give you unexpected answers because it has a tendency to modify/rewrite some of these instructions
with its preferred coding templates. However, once you have completed this exercise by hand, feel free
to experiment with MARS.

___ addi $s0, $zero, 0x5B03 A: 0x8C49000A

___ slti $a1, $a2, -1 B: 0x3C16FFFF

___ addi $t2, $s0, 8 C: 0x000C59C0

___ loop: beq $s1, $s2, loop D: 0x34E60009

___ loop2: bne $s2, $s1, loop2 E: 0x28C5FFFF

___ sll $t3, $t4, 7 G: 0x30A64569

___ and $17, $18, $19 H: 0x1230FFFF

___ ori $a2, $a3, 9 J: 0x20105B03

___ lw $t1, 0xA($v0) K: 0x1651FFFF

___ add $s1, $s2, $s3 L: 0x220A0008

___ andi $a2, $a1, 0x4569 M: 0x01232020

___ lui $t1, 0x4569 N: 0x02538820

___ lui $s6, 0xFFFF O: 0x02538824

___ add $a0, $t1, $v1 P: 0x3C094569

Joe Puccio
J

Joe Puccio
E

Joe Puccio
L

Joe Puccio
H

Joe Puccio
K

Joe Puccio
M

Joe Puccio
think this should start with 023

Joe Puccio
O

Joe Puccio
D

Joe Puccio
A

Joe Puccio
N

Joe Puccio
J

Joe Puccio
P

Joe Puccio
B

Joe Puccio
C

Page 2 of 3

Problem 1: Converting Instructions to Assembly Language (continued)

b) The “no-op” pseudoinstruction (it is not a real instruction) consists of all zeroes: 0x00000000.
Write the actual instruction that this corresponds to (including register operands).

Answer:

Problem 2: Converting pseudo-instructions (35 points)

MIPS assembly language provides opcode mnemonics for instructions that are not part of the
instruction set architecture. These pseudoinstructions can be generated using a sequence of one or
more “true” MIPS instructions.

Find a “true-instruction” equivalent for each of the following pseudo-instructions (some are official
MIPS pseudoinstructions, others are made up). Each of these can be implemented using only one real
MIPS instruction.

a) move rA, rB Answer:
Reg[rA] ← Reg[rB]
Move register rB to rA

b) not rA, rB Answer:
Reg[rA] ← ~Reg[rB]
Put the bitwise complement of rB into rA

c) neg rA, rB Answer:
Reg[rA] ← -Reg[rB]
Put the 2’s complement of rB into rA

d) dec rA Answer:
Reg[rA] ← Reg[rA] - 1
Decrement rA by 1 and place result in rA

e) Suppose we wanted to fill a register rA with the value 65535 (0x0000FFFF). Would the instruction
ori rA,$0,0xFFFF perform that action? If not, what would be the value in rA?

f) Suppose we wanted to fill a register rA with the value 4095 (0x00000FFF). Would the instruction
addi rA,$0,4095 perform that operation? If not, what would be the value in rA?

g) Suppose we wanted to fill a register rA with the value -1 (0xFFFFFFFF). Would the instruction
ori rA,$0,-1 perform that operation? If not, what would be the value in rA?

Joe Puccio
ssl $r0, $r0, 0

Joe Puccio
add $rA, $rB, $zero

Joe Puccio
nor $rA, $rB, $zero

Joe Puccio
sub $rA, $rB, $zero

Joe Puccio
unsure

Joe Puccio
addi $rA, $rA, 1111

Joe Puccio
unsure

Joe Puccio
Yes, it would perform that action.

Joe Puccio
Yes, it would perform that action.

Joe Puccio
Yes, it would perform that action.

Joe Puccio
unsure

Page 3 of 3

Problem 3. “Loading up at the Store” (30 points)

The MIPS ISA provides access to memory exclusively through load (lw) and store (sw) instructions.
Both instructions are encoded using the I-format, thus providing three operands: two registers and a
16-bit sign- extended constant. The memory address is computed by adding the contents of the
register specified in the rs register field to the sign-extended 16-bit constant. Then either the contents
of the specified memory location are loaded in the register specified in rt instruction field (lw), or that
register’s contents are stored in the indicated memory location (sw).

a) How many distinct memory locations can be accessed by changing the immediate field if the value
in register rs is fixed at, say, 215? (Note: addresses generated by lw/sw instructions must be multiples
of 4, i.e., they must be word addresses.)

Answer:

b) MIPS assemblers provide an instruction for loading an effective address from memory into a
register, called “la” for load address. The syntax of this pseudoinstruction matches the lw
instruction, and an example is shown below:

la $t0, 100($t1)

The result of the above instruction is to store the result of the address calculation into register $t0.
The memory is actually not read. Give one true instruction (with operands) that can be used to
implement this pseudoinstruction.

Answer:

c) MIPS does not provide any instruction for specifying a memory address with a variable offset from
rs (i.e., allows only an immediate constant to be specified as the offset). Fill in the multiple-
instruction sequence below to accomplish this type of memory access using available MIPS
instructions. Assume the base array’s base address (i.e., the location of its 0th member) is in register
$t0, the word index is located in $t1, and the value in memory is being loaded into $t2.

Thus, we effectively want to execute an instruction that would look like (but does not exist):

lw $t2, $t0(4*$t1)

However, the MIPS instruction set does not provide any such instruction. Your task is to use a
sequence of actual MIPS instructions to implement the same behavior.

Joe Puccio

Joe Puccio
(2^(16))/4 = 16384

Joe Puccio
unsure

Joe Puccio
addi $t1, $zero 0x76543210
lb $t0,

Joe Puccio
unsure

Joe Puccio
unsure

Joe Puccio
unsure

